
Package ‘MatchIt’
November 15, 2022

Version 4.5.0

Title Nonparametric Preprocessing for Parametric Causal Inference

Description Selects matched samples of the original treated and
control groups with similar covariate distributions -- can be
used to match exactly on covariates, to match on propensity
scores, or perform a variety of other matching procedures. The
package also implements a series of recommendations offered in
Ho, Imai, King, and Stuart (2007) <DOI:10.1093/pan/mpl013>. (The
'gurobi' package, which is not on CRAN, is optional and comes with
an installation of the Gurobi Optimizer, available at
<https://www.gurobi.com>.)

Depends R (>= 3.1.0)

Imports backports (>= 1.1.9),
Rcpp

Suggests optmatch (>= 0.10.0),
Matching,
rgenoud,
quickmatch (>= 0.2.1),
nnet,
rpart,
mgcv,
CBPS (>= 0.17),
dbarts,
randomForest (>= 4.7-1),
glmnet (>= 4.0),
gbm (>= 2.1.7),
cobalt (>= 4.2.3),
boot,
marginaleffects (>= 0.8.0),
sandwich (>= 2.5-1),
survival,
RcppProgress (>= 0.4.2),
Rglpk,
Rsymphony,
gurobi,
knitr,
rmarkdown

LinkingTo Rcpp, RcppProgress

1

https://doi.org/10.1093/pan/mpl013
https://www.gurobi.com


2 add_s.weights

SystemRequirements C++11

Encoding UTF-8

LazyData true

License GPL (>=2)

URL https://kosukeimai.github.io/MatchIt/,

https://github.com/kosukeimai/MatchIt

BugReports https://github.com/kosukeimai/MatchIt/issues

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

R topics documented:
add_s.weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
lalonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
mahalanobis_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
match.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
matchit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
method_cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
method_cem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
method_exact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
method_full . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
method_genetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
method_nearest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
method_optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
method_quick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
method_subclass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
plot.matchit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
plot.summary.matchit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
rbind.matchdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
summary.matchit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Index 64

add_s.weights Add sampling weights to a matchit object

Description

Adds sampling weights to a matchit object so that they are incorporated into balance assessment
and creation of the weights. This would typically only be used when an argument to s.weights
was not supplied to matchit() (i.e., because they were not to be included in the estimation of
the propensity score) but sampling weights are required for generalizing an effect to the correct
population. Without adding sampling weights to the matchit object, balance assessment tools (i.e.,
summary.matchit() and plot.matchit()) will not calculate balance statistics correctly, and the
weights produced by match.data() and get_matches() will not incorporate the sampling weights.

https://kosukeimai.github.io/MatchIt/
https://github.com/kosukeimai/MatchIt
https://github.com/kosukeimai/MatchIt/issues


add_s.weights 3

Usage

add_s.weights(m, s.weights = NULL, data = NULL)

Arguments

m a matchit object; the output of a call to matchit(), typically with the s.weights
argument unspecified.

s.weights an numeric vector of sampling weights to be added to the matchit object. Can
also be specified as a string containing the name of variable in data to be used
or a one-sided formula with the variable on the right-hand side (e.g., ~ SW).

data a data frame containing the sampling weights if given as a string or formula. If
unspecified, add_s.weights() will attempt to find the dataset using the envi-
ronment of the matchit object.

Value

a matchit object with an s.weights component containing the supplied sampling weights. If
s.weights = NULL, the original matchit object is returned.

Author(s)

Noah Greifer

See Also

matchit(); match.data()

Examples

data("lalonde")

# Generate random sampling weights, just
# for this example
sw <- rchisq(nrow(lalonde), 2)

# NN PS match using logistic regression PS that doesn't
# include sampling weights
m.out <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde)

m.out

# Add s.weights to the matchit object
m.out <- add_s.weights(m.out, sw)

m.out #note additional output

# Check balance; note that sample sizes incorporate
# s.weights
summary(m.out, improvement = FALSE)



4 distance

distance Propensity scores and other distance measures

Description

Several matching methods require or can involve the distance between treated and control units.
Options include the Mahalanobis distance, propensity score distance, or distance between user-
supplied values. Propensity scores are also used for common support via the discard options
and for defining calipers. This page documents the options that can be supplied to the distance
argument to matchit().

Allowable options

There are four ways to specify the distance argument: 1) as a string containing the name of a
method for estimating propensity scores, 2) as a string containing the name of a method for com-
puting pairwise distances from the covariates, 3) as a vector of values whose pairwise differences
define the distance between units, or 4) as a distance matrix containing all pairwise distances. The
options are detailed below.

Propensity score estimation methods:
When distance is specified as the name of a method for estimating propensity scores (described
below), a propensity score is estimated using the variables in formula and the method correspond-
ing to the given argument. This propensity score can be used to compute the distance between
units as the absolute difference between the propensity scores of pairs of units. Propensity scores
can also be used to create calipers and common support restrictions, whether or not they are used
in the actual distance measure used in the matching, if any.
In addition to the distance argument, two other arguments can be specified that relate to the
estimation and manipulation of the propensity scores. The link argument allows for different
links to be used in models that require them such as generalized linear models, for which the
logit and probit links are allowed, among others. In addition to specifying the link, the link
argument can be used to specify whether the propensity score or the linearized version of the
propensity score should be used; by specifying link = "linear.{link}", the linearized version
will be used.
The distance.options argument can also be specified, which should be a list of values passed to
the propensity score-estimating function, for example, to choose specific options or tuning param-
eters for the estimation method. If formula, data, or verbose are not supplied to distance.options,
the corresponding arguments from matchit() will be automatically supplied. See the Examples
for demonstrations of the uses of link and distance.options. When s.weights is supplied in
the call to matchit(), it will automatically be passed to the propensity score-estimating function
as the weights argument unless otherwise described below.
The following methods for estimating propensity scores are allowed:

"glm" The propensity scores are estimated using a generalized linear model (e.g., logistic regres-
sion). The formula supplied to matchit() is passed directly to glm(), and predict.glm()
is used to compute the propensity scores. The link argument can be specified as a link func-
tion supplied to binomial(), e.g., "logit", which is the default. When link is prepended
by "linear.", the linear predictor is used instead of the predicted probabilities. distance =
"glm" with link = "logit" (logistic regression) is the default in matchit(). (This used to
be able to be requested as distance = "ps", which still works.)

"gam" The propensity scores are estimated using a generalized additive model. The formula
supplied to matchit() is passed directly to mgcv::gam(), and mgcv::predict.gam() is



distance 5

used to compute the propensity scores. The link argument can be specified as a link function
supplied to binomial(), e.g., "logit", which is the default. When link is prepended by
"linear.", the linear predictor is used instead of the predicted probabilities. Note that unless
the smoothing functions mgcv::s(), mgcv::te(), mgcv::ti(), or mgcv::t2() are used in
formula, a generalized additive model is identical to a generalized linear model and will
estimate the same propensity scores as glm(). See the documentation for mgcv::gam(),
mgcv::formula.gam(), and mgcv::gam.models() for more information on how to specify
these models. Also note that the formula returned in the matchit() output object will be
a simplified version of the supplied formula with smoothing terms removed (but all named
variables present).

"gbm" The propensity scores are estimated using a generalized boosted model. The formula
supplied to matchit() is passed directly to gbm::gbm(), and gbm::predict.gbm() is used
to compute the propensity scores. The optimal tree is chosen using 5-fold cross-validation by
default, and this can be changed by supplying an argument to method to distance.options;
see gbm::gbm.perf() for details. The link argument can be specified as "linear" to
use the linear predictor instead of the predicted probabilities. No other links are allowed.
The tuning parameter defaults differ from gbm::gbm(); they are as follows: n.trees = 1e4,
interaction.depth = 3, shrinkage = .01, bag.fraction = 1, cv.folds = 5, keep.data
= FALSE. These are the same defaults as used in WeightIt and twang, except for cv.folds
and keep.data. Note this is not the same use of generalized boosted modeling as in twang;
here, the number of trees is chosen based on cross-validation or out-of-bag error, rather than
based on optimizing balance. twang should not be cited when using this method to estimate
propensity scores.

"lasso", "ridge", "elasticnet" The propensity scores are estimated using a lasso, ridge, or
elastic net model, respectively. The formula supplied to matchit() is processed with
model.matrix() and passed to glmnet::cv.glmnet(), and glmnet::predict.cv.glmnet()
is used to compute the propensity scores. The link argument can be specified as a link func-
tion supplied to binomial(), e.g., "logit", which is the default. When link is prepended by
"linear.", the linear predictor is used instead of the predicted probabilities. When link =
"log", a Poisson model is used. For distance = "elasticnet", the alpha argument, which
controls how to prioritize the lasso and ridge penalties in the elastic net, is set to .5 by default
and can be changed by supplying an argument to alpha in distance.options. For "lasso"
and "ridge", alpha is set to 1 and 0, respectively, and cannot be changed. The cv.glmnet()
defaults are used to select the tuning parameters and generate predictions and can be mod-
ified using distance.options. If the s argument is passed to distance.options, it will
be passed to predict.cv.glmnet(). Note that because there is a random component to
choosing the tuning parameter, results will vary across runs unless a seed is set.

"rpart" The propensity scores are estimated using a classification tree. The formula supplied
to matchit() is passed directly to rpart::rpart(), and rpart::predict.rpart() is used
to compute the propensity scores. The link argument is ignored, and predicted probabilities
are always returned as the distance measure.

"randomforest" The propensity scores are estimated using a random forest. The formula sup-
plied to matchit() is passed directly to randomForest::randomForest(), and randomForest::predict.randomForest()
is used to compute the propensity scores. The link argument is ignored, and predicted prob-
abilities are always returned as the distance measure.

"nnet" The propensity scores are estimated using a single-hidden-layer neural network. The
formula supplied to matchit() is passed directly to nnet::nnet(), and fitted() is used
to compute the propensity scores. The link argument is ignored, and predicted probabilities
are always returned as the distance measure. An argument to size must be supplied to
distance.options when using method = "nnet".

"cbps" The propensity scores are estimated using the covariate balancing propensity score (CBPS)
algorithm, which is a form of logistic regression where balance constraints are incorporated



6 distance

to a generalized method of moments estimation of of the model coefficients. The formula
supplied to matchit() is passed directly to CBPS::CBPS(), and fitted() is used to com-
pute the propensity scores. The link argument can be specified as "linear" to use the linear
predictor instead of the predicted probabilities. No other links are allowed. The estimand
argument supplied to matchit() will be used to select the appropriate estimand for use in
defining the balance constraints, so no argument needs to be supplied to ATT in CBPS.

"bart" The propensity scores are estimated using Bayesian additive regression trees (BART).
The formula supplied to matchit() is passed directly to dbarts::bart2(), and dbarts::fitted.bart()
is used to compute the propensity scores. The link argument can be specified as "linear"
to use the linear predictor instead of the predicted probabilities. When s.weights is supplied
to matchit(), it will not be passed to bart2 because the weights argument in bart2 does
not correspond to sampling weights.

Methods for computing distances from covariates:
The following methods involve computing a distance matrix from the covariates themselves with-
out estimating a propensity score. Calipers on the distance measure and common support restric-
tions cannot be used, and the distance component of the output object will be empty because
no propensity scores are estimated. The link and distance.options arguments are ignored
with these methods. See the individual matching methods pages for whether these distances are
allowed and how they are used. Each of these distance measures can also be calculated outside
matchit() using its corresponding function.

"euclidean" The Euclidean distance is the raw distance between units, computed as

dij =
√

(xi − xj)(xi − xj)′

It is sensitive to the scale of the covariates, so covariates with larger scales will take higher
priority.

"scaled_euclidean" The scaled Euclidean distance is the Euclidean distance computed on the
scaled (i.e., standardized) covariates. This ensures the covariates are on the same scale. The
covariates are standardized using the pooled within-group standard deviations, computed by
treatment group-mean centering each covariate before computing the standard deviation in
the full sample.

"mahalanobis" The Mahalanobis distance is computed as

dij =
√

(xi − xj)Σ−1(xi − xj)′

where Σ is the pooled within-group covariance matrix of the covariates, computed by treat-
ment group-mean centering each covariate before computing the covariance in the full sam-
ple. This ensures the variables are on the same scale and accounts for the correlation between
covariates.

"robust_mahalanobis" The robust rank-based Mahalanobis distance is the Mahalanobis dis-
tance computed on the ranks of the covariates with an adjustment for ties. It is described in
Rosenbaum (2010, ch. 8) as an alternative to the Mahalanobis distance that handles outliers
and rare categories better than the standard Mahalanobis distance but is not affinely invariant.

To perform Mahalanobis distance matching and estimate propensity scores to be used for a pur-
pose other than matching, the mahvars argument should be used along with a different specifica-
tion to distance. See the individual matching method pages for details on how to use mahvars.

Distances supplied as a numeric vector or matrix:
distance can also be supplied as a numeric vector whose values will be taken to function like
propensity scores; their pairwise difference will define the distance between units. This might be



distance 7

useful for supplying propensity scores computed outside matchit() or resupplying matchit()
with propensity scores estimated previously without having to recompute them.
distance can also be supplied as a matrix whose values represent the pairwise distances between
units. The matrix should either be a square, with a row and column for each unit (e.g., as the
output of a call to as.matrix(dist(.))), or have as many rows as there are treated units and
as many columns as there are control units (e.g., as the output of a call to mahalanobis_dist()
or optmatch::match_on()). Distance values of Inf will disallow the corresponding units to be
matched. When distance is a supplied as a numeric vector or matrix, link and distance.options
are ignored.

Note

In versions of MatchIt prior to 4.0.0, distance was specified in a slightly different way. When
specifying arguments using the old syntax, they will automatically be converted to the correspond-
ing method in the new syntax but a warning will be thrown. distance = "logit", the old default,
will still work in the new syntax, though distance = "glm", link = "logit" is preferred (note
that these are the default settings and don’t need to be made explicit).

Examples

data("lalonde")

# Linearized probit regression PS:
m.out1 <- matchit(treat ~ age + educ + race + married +

nodegree + re74 + re75, data = lalonde,
distance = "glm", link = "linear.probit")

# GAM logistic PS with smoothing splines (s()):
m.out2 <- matchit(treat ~ s(age) + s(educ) + race + married +

nodegree + re74 + re75, data = lalonde,
distance = "gam")

summary(m.out2$model)

# CBPS for ATC matching w/replacement, using the just-
# identified version of CBPS (setting method = "exact"):
m.out3 <- matchit(treat ~ age + educ + race + married +

nodegree + re74 + re75, data = lalonde,
distance = "cbps", estimand = "ATC",
distance.options = list(method = "exact"),
replace = TRUE)

# Mahalanobis distance matching - no PS estimated
m.out4 <- matchit(treat ~ age + educ + race + married +

nodegree + re74 + re75, data = lalonde,
distance = "mahalanobis")

m.out4$distance #NULL

# Mahalanobis distance matching with PS estimated
# for use in a caliper; matching done on mahvars
m.out5 <- matchit(treat ~ age + educ + race + married +

nodegree + re74 + re75, data = lalonde,
distance = "glm", caliper = .1,
mahvars = ~ age + educ + race + married +

nodegree + re74 + re75)



8 lalonde

summary(m.out5)

# User-supplied propensity scores
p.score <- fitted(glm(treat ~ age + educ + race + married +

nodegree + re74 + re75, data = lalonde,
family = binomial))

m.out6 <- matchit(treat ~ age + educ + race + married +
nodegree + re74 + re75, data = lalonde,

distance = p.score)

# User-supplied distance matrix using optmatch::match_on()

dist_mat <- optmatch::match_on(
treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "rank_mahalanobis")

m.out7 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,

distance = dist_mat)

lalonde Data from National Supported Work Demonstration and PSID, as an-
alyzed by Dehejia and Wahba (1999).

Description

This is a subsample of the data from the treated group in the National Supported Work Demonstra-
tion (NSW) and the comparison sample from the Population Survey of Income Dynamics (PSID).
This data was previously analyzed extensively by Lalonde (1986) and Dehejia and Wahba (1999).

Format

A data frame with 614 observations (185 treated, 429 control). There are 9 variables measured for
each individual.

• "treat" is the treatment assignment (1=treated, 0=control).

• "age" is age in years.

• "educ" is education in number of years of schooling.

• "race" is the individual’s race/ethnicity, (Black, Hispanic, or White). Note previous versions
of this dataset used indicator variables black and hispan instead of a single race variable.

• "married" is an indicator for married (1=married, 0=not married).

• "nodegree" is an indicator for whether the individual has a high school degree (1=no degree,
0=degree).

• "re74" is income in 1974, in U.S. dollars.

• "re75" is income in 1975, in U.S. dollars.

• "re78" is income in 1978, in U.S. dollars.

"treat" is the treatment variable, "re78" is the outcome, and the others are pre-treatment covariates.



mahalanobis_dist 9

References

Lalonde, R. (1986). Evaluating the econometric evaluations of training programs with experimental
data. American Economic Review 76: 604-620.

Dehejia, R.H. and Wahba, S. (1999). Causal Effects in Nonexperimental Studies: Re-Evaluating the
Evaluation of Training Programs. Journal of the American Statistical Association 94: 1053-1062.

mahalanobis_dist Compute a Distance Matrix

Description

The functions compute a distance matrix, either for a single dataset (i.e., the distances between all
pairs of units) or for two groups defined by a splitting variable (i.e., the distances between all units
in one group and all units in the other). These distance matrices include the Mahalanobis distance,
Euclidean distance, scaled Euclidean distance, and robust (rank-based) Mahalanobs distance. These
functions can be used as inputs to the distance argument to matchit() and are used to compute
the corresponding distance matrices within matchit() when named.

Usage

mahalanobis_dist(
formula = NULL,
data = NULL,
s.weights = NULL,
var = NULL,
discarded = NULL,
...

)

scaled_euclidean_dist(
formula = NULL,
data = NULL,
s.weights = NULL,
var = NULL,
discarded = NULL,
...

)

robust_mahalanobis_dist(
formula = NULL,
data = NULL,
s.weights = NULL,
discarded = NULL,
...

)

euclidean_dist(formula = NULL, data = NULL, ...)



10 mahalanobis_dist

Arguments

formula a formula with the treatment (i.e., splitting variable) on the left side and the
covariates used to compute the distance matrix on the right side. If there is
no left-hand-side variable, the distances will be computed between all pairs of
units. If NULL, all the variables in data will be used as covariates.

data a data frame containing the variables named in formula. If formula is NULL, all
variables in data will be used as covariates.

s.weights when var = NULL, an optional vector of sampling weights used to compute the
variances used in the Mahalanobis, scaled Euclidean, and robust Mahalanobis
distances.

var for mahalanobis_dist(), a covariance matrix used to scale the covariates. For
scaled_euclidean_dist(), either a covariance matrix (from which only the
diagonal elements will be used) or a vector of variances used to scale the co-
variates. If NULL, these values will be calculated using formulas described in
Details.

discarded a logical vector denoting which units are to be discarded or not. This is used
only when var = NULL. The scaling factors will be computed only using the non-
discarded units, but the distance matrix will be computed for all units (discarded
and non-discarded).

... ignored. Included to make cycling through these functions easier without having
to change the arguments supplied.

Details

The Euclidean distance (computed using euclidean_dist()) is the raw distance between units,
computed as

dij =
√
(xi − xj)(xi − xj)′

where xi and xj are vectors of covariates for units i and j, respectively. The Euclidean distance is
sensitive to the scales of the variables and their redundancy (i.e., correlation). It should probably
not be used for matching unless all of the variables have been previously scaled appropriately or are
already on the same scale. It forms the basis of the other distance measures.

The scaled Euclidean distance (computed using scaled_euclidean_dist()) is the Euclidean
distance computed on the scaled covariates. Typically the covariates are scaled by dividing by their
standard deviations, but any scaling factor can be supplied using the var argument. This leads to a
distance measure computed as

dij =
√

(xi − xj)S
−1
d (xi − xj)′

where Sd is a diagonal matrix with the squared scaling factors on the diagonal. Although this mea-
sure is not sensitive to the scales of the variables (because they are all placed on the same scale),
it is still sensitive to redundancy among the variables. For example, if 5 variables measure approx-
imately the same construct (i.e., are highly correlated) and 1 variable measures another construct,
the first construct will have 5 times as much influence on the distance between units as the second
construct. The Mahalanobis distance attempts to address this issue.

The Mahalanobis distance (computed using mahalanobis_dist()) is computed as

dij =
√

(xi − xj)S−1(xi − xj)′

where S is a scaling matrix, typically the covariance matrix of the covariates. It is essentially
equivalent to the Euclidean distance computed on the scaled principal components of the covariates.



mahalanobis_dist 11

This is the most popular distance matrix for matching because it is not sensitive to the scale of the
covariates and accounts for redundancy between them. The scaling matrix can also be supplied
using the var argument.

The Mahalanobis distance can be sensitive to outliers and long-tailed or otherwise non-normally
distributed covariates and may not perform well with categorical variables due to prioritizing rare
categories over common ones. One solution is the rank-based robust Mahalanobis distance (com-
puted using robust_mahalanobis_dist()), which is computed by first replacing the covariates
with their ranks (using average ranks for ties) and rescaling each ranked covariate by a constant
scaling factor before computing the usual Mahalanobis distance on the rescaled ranks.

The Mahalanobis distance and its robust variant are computed internally by transforming the co-
variates in such a way that the Euclidean distance computed on the scaled covariates is equal to
the requested distance. For the Mahalanobis distance, this involves replacing the covariates vec-
tor xi with xiS

−.5, where S−.5 is the Cholesky decomposition of the (generalized) inverse of the
covariance matrix S.

When a left-hand-side splitting variable is present in formula and var = NULL (i.e., so that the
scaling matrix is computed internally), the covariance matrix used is the "pooled" covariance matrix,
which essentially is a weighted average of the covariance matrices computed separately within each
level of the splitting variable to capture within-group variation and reduce sensitivity to covariate
imbalance. This is also true of the scaling factors used in the scaled Euclidean distance.

Value

A numeric distance matrix. When formula has a left-hand-side (treatment) variable, the matrix will
have one row for each treated unit and one column for each control unit. Otherwise, the matrix will
have one row and one column for each treated unit.

Author(s)

Noah Greifer

References

Rosenbaum, P. R. (2010). Design of observational studies. Springer.

Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a Control Group Using Multivariate
Matched Sampling Methods That Incorporate the Propensity Score. The American Statistician,
39(1), 33–38. doi:10.2307/2683903

Rubin, D. B. (1980). Bias Reduction Using Mahalanobis-Metric Matching. Biometrics, 36(2),
293–298. doi:10.2307/2529981

See Also

distance, matchit(), dist() (which is used internally to compute Euclidean distances)

optmatch::match_on(), which provides similar functionality but with fewer options and a focus
on efficient storage of the output.

Examples

data("lalonde")

# Computing the scaled Euclidean distance between all units:
d <- scaled_euclidean_dist(~ age + educ + race + married,

data = lalonde)

https://doi.org/10.2307/2683903
https://doi.org/10.2307/2529981


12 match.data

# Another interface using the data argument:
dat <- subset(lalonde, select = c(age, educ, race, married))
d <- scaled_euclidean_dist(data = dat)

# Computing the Mahalanobis distance between treated and
# control units:
d <- mahalanobis_dist(treat ~ age + educ + race + married,

data = lalonde)

# Supplying a covariance matrix or vector of variances (note:
# a bit more complicated with factor variables)
dat <- subset(lalonde, select = c(age, educ, married, re74))
vars <- sapply(dat, var)

d <- scaled_euclidean_dist(data = dat, var = vars)

# Same result:
d <- scaled_euclidean_dist(data = dat, var = diag(vars))

# Discard units:
discard <- sample(c(TRUE, FALSE), nrow(lalonde),

replace = TRUE, prob = c(.2, .8))

d <- mahalanobis_dist(treat ~ age + educ + race + married,
data = lalonde, discarded = discard)

dim(d) #all units present in distance matrix
table(lalonde$treat)

match.data Construct a matched dataset from a matchit object

Description

match.data() and get_matches() create a data frame with additional variables for the distance
measure, matching weights, and subclasses after matching. This dataset can be used to estimate
treatment effects after matching or subclassification. get_matches() is most useful after matching
with replacement; otherwise, match.data() is more flexible. See Details below for the difference
between them.

Usage

match.data(
object,
group = "all",
distance = "distance",
weights = "weights",
subclass = "subclass",
data = NULL,
include.s.weights = TRUE,
drop.unmatched = TRUE

)



match.data 13

get_matches(
object,
distance = "distance",
weights = "weights",
subclass = "subclass",
id = "id",
data = NULL,
include.s.weights = TRUE

)

Arguments

object a matchit object; the output of a call to matchit().

group which group should comprise the matched dataset: "all" for all units, "treated"
for just treated units, or "control" for just control units. Default is "all".

distance a string containing the name that should be given to the variable containing
the distance measure in the data frame output. Default is "distance", but
"prop.score" or similar might be a good alternative if propensity scores were
used in matching. Ignored if a distance measure was not supplied or estimated
in the call to matchit().

weights a string containing the name that should be given to the variable containing the
matching weights in the data frame output. Default is "weights".

subclass a string containing the name that should be given to the variable containing the
subclasses or matched pair membership in the data frame output. Default is
"subclass".

data a data frame containing the original dataset to which the computed output vari-
ables (distance, weights, and/or subclass) should be appended. If empty,
match.data() and get_matches() will attempt to find the dataset using the
environment of the matchit object, which can be unreliable; see Notes.

include.s.weights

logical; whether to multiply the estimated weights by the sampling weights
supplied to matchit(), if any. Default is TRUE. If FALSE, the weights in the
match.data() or get_matches() output should be multiplied by the sampling
weights before being supplied to the function estimating the treatment effect in
the matched data.

drop.unmatched logical; whether the returned data frame should contain all units (FALSE) or
only units that were matched (i.e., have a matching weight greater than zero)
(TRUE). Default is TRUE to drop unmatched units.

id a string containing the name that should be given to the variable containing the
unit IDs in the data frame output. Default is "id". Only used with get_matches();
for match.data(), the units IDs are stored in the row names of the returned data
frame.

Details

match.data() creates a dataset with one row per unit. It will be identical to the dataset supplied
except that several new columns will be added containing information related to the matching.
When drop.unmatched = TRUE, the default, units with weights of zero, which are those units that
were discarded by common support or the caliper or were simply not matched, will be dropped from
the dataset, leaving only the subset of matched units. The idea is for the output of match.data() to



14 match.data

be used as the dataset input in calls to glm() or similar to estimate treatment effects in the matched
sample. It is important to include the weights in the estimation of the effect and its standard error.
The subclass column, when created, contains par or subclass membership and should be used to
estimate the effect and its standard error. Subclasses will only be included if there is a subclass
component in the matchit object, which does not occur with matching with replacement, in which
case get_matches() should be used. See vignette("estimating-effects") for information on
how to use match.data() output to estimate effects.

get_matches() is similar to match.data(); the primary difference occurs when matching is per-
formed with replacement, i.e., when units do not belong to a single matched pair. In this case, the
output of get_matches() will be a dataset that contains one row per unit for each pair they are a
part of. For example, if matching was performed with replacement and a control unit was matched
to two treated units, that control unit will have two rows in the output dataset, one for each pair it is
a part of. Weights are computed for each row, and are equal to the inverse of the number of control
units in each control unit’s subclass. Unmatched units are dropped. An additional column with unit
IDs will be created (named using the id argument) to identify when the same unit is present in mul-
tiple rows. This dataset structure allows for the inclusion of both subclass membership and repeated
use of units, unlike the output of match.data(), which lacks subclass membership when match-
ing is done with replacement. A match.matrix component of the matchit object must be present
to use get_matches(); in some forms of matching, it is absent, in which case match.data()
should be used instead. See vignette("estimating-effects") for information on how to use
get_matches() output to estimate effects after matching with replacement.

Value

A data frame containing the data supplied in the data argument or in the original call to matchit()
with the computed output variables appended as additional columns, named according the argu-
ments above. For match.data(), the group and drop.unmatched arguments control whether only
subsets of the data are returned. See Details above for how match.data() and get_matches() dif-
fer. Note that get_matches sorts the data by subclass and treatment status, unlike match.data(),
which uses the order of the data.

The returned data frame will contain the variables in the original data set or dataset supplied to data
and the following columns:

distance The propensity score, if estimated or supplied to the distance argument in
matchit() as a vector.

weights The computed matching weights. These must be used in effect estimation to
correctly incorporate the matching.

subclass Matching strata membership. Units with the same value are in the same stratum.

id The ID of each unit, corresponding to the row names in the original data or
dataset supplied to data. Only included in get_matches output. This column
can be used to identify which rows belong to the same unit since the same unit
may appear multiple times if reused in matching with replacement.

These columns will take on the name supplied to the corresponding arguments in the call to match.data()
or get_matches(). See Examples for an example of rename the distance column to "prop.score".

If data or the original dataset supplied to matchit() was a data.table or tbl, the match.data()
output will have the same class, but the get_matches() output will always be a base R data.frame.

In addition to their base class (e.g., data.frame or tbl), returned objects have the class matchdata
or getmatches. This class is important when using rbind() to append matched datasets.



matchit 15

Note

The most common way to use match.data() and get_matches() is by supplying just the matchit
object, e.g., as match.data(m.out). A data set will first be searched in the environment of the
matchit formula, then in the calling environment of match.data() or get_matches(), and finally
in the model component of the matchit object if a propensity score was estimated.

When called from an environment different from the one in which matchit() was originally called
and a propensity score was not estimated (or was but with discard not "none" and reestimate =
TRUE), this syntax may not work because the original dataset used to construct the matched dataset
will not be found. This can occur when matchit() was run within an lapply() or purrr::map()
call. The solution, which is recommended in all cases, is simply to supply the original dataset
to the data argument of match.data(), e.g., as match.data(m.out, data = original_data), as
demonstrated in the Examples.

See Also

matchit(); rbind.matchdata()

vignette("estimating-effects") for uses of match.data() and get_matches() in estimating
treatment effects.

Examples

data("lalonde")

# 4:1 matching w/replacement
m.out1 <- matchit(treat ~ age + educ + married +

race + nodegree + re74 + re75,
data = lalonde, replace = TRUE,
caliper = .05, ratio = 4)

m.data1 <- match.data(m.out1, data = lalonde,
distance = "prop.score")

dim(m.data1) #one row per matched unit
head(m.data1, 10)

g.matches1 <- get_matches(m.out1, data = lalonde,
distance = "prop.score")

dim(g.matches1) #multiple rows per matched unit
head(g.matches1, 10)

matchit Matching for Causal Inference

Description

matchit() is the main function of MatchIt and performs pairing, subset selection, and subclas-
sification with the aim of creating treatment and control groups balanced on included covariates.
MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric
statistical models by preprocessing data with nonparametric matching methods.

This page documents the overall use of matchit(), but for specifics of how matchit() works with
individual matching methods, see the individual pages linked in the Details section below.



16 matchit

Usage

matchit(
formula,
data = NULL,
method = "nearest",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
exact = NULL,
mahvars = NULL,
antiexact = NULL,
discard = "none",
reestimate = FALSE,
s.weights = NULL,
replace = FALSE,
m.order = NULL,
caliper = NULL,
std.caliper = TRUE,
ratio = 1,
verbose = FALSE,
include.obj = FALSE,
...

)

## S3 method for class 'matchit'
print(x, ...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used
in creating the distance measure used in the matching. This formula will be
supplied to the functions that estimate the distance measure. The formula should
be specified as A ~ X1 + X2 + ... where A represents the treatment variable and
X1 and X2 are covariates.

data a data frame containing the variables named in formula and possible other ar-
guments. If not found in data, the variables will be sought in the environment.

method the matching method to be used. The allowed methods are "nearest" for near-
est neighbor matching (on the propensity score by default), "optimal" for op-
timal pair matching, "full" for optimal full matching, "genetic" for genetic
matching, "cem" for coarsened exact matching, "exact" for exact matching,
"cardinality" for cardinality and template matching, and "subclass" for
subclassification. When set to NULL, no matching will occur, but propensity
score estimation and common support restrictions will still occur if requested.
See the linked pages for each method for more details on what these methods do,
how the arguments below are used by each on, and what additional arguments
are allowed.

distance the distance measure to be used. Can be either the name of a method of esti-
mating propensity scores (e.g., "glm"), the name of a method of computing a
distance matrix from the covariates (e.g., "mahalanobis"), a vector of already-
computed distance measures, or a matrix of pairwise distances. See distance



matchit 17

for allowable options. The default is "glm" for propensity scores estimated with
logistic regression using glm(). Ignored for some methods; see individual meth-
ods pages for information on whether and how the distance measure is used.

link when distance is specified as a string, an additional argument controlling the
link function used in estimating the distance measure. Allowable options depend
on the specific distance value specified. See distance for allowable options
with each option. The default is "logit", which, along with distance = "glm",
identifies the default measure as logistic regression propensity scores.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance. See
distance for an example of its use.

estimand a string containing the name of the target estimand desired. Can be one of "ATT"
or "ATC". Some methods accept "ATE" as well. Default is "ATT". See Details
and the individual methods pages for information on how this argument is used.

exact for methods that allow it, for which variables exact matching should take place.
Can be specified as a string containing the names of variables in data to be used
or a one-sided formula with the desired variables on the right-hand side (e.g., ~
X3 + X4). See the individual methods pages for information on whether and how
this argument is used.

mahvars for methods that allow it, on which variables Mahalanobis distance matching
should take place when distance corresponds to propensity scores. Usually
used to perform Mahalanobis distance matching within propensity score calipers,
where the propensity scores are computed using formula and distance. Can
be specified as a string containing the names of variables in data to be used or a
one-sided formula with the desired variables on the right-hand side (e.g., ~ X3 +
X4). See the individual methods pages for information on whether and how this
argument is used.

antiexact for methods that allow it, for which variables anti-exact matching should take
place. Anti-exact matching ensures paired individuals do not have the same
value of the anti-exact matching variable(s). Can be specified as a string con-
taining the names of variables in data to be used or a one-sided formula with
the desired variables on the right-hand side (e.g., ~ X3 + X4). See the individual
methods pages for information on whether and how this argument is used.

discard a string containing a method for discarding units outside a region of common
support. When a propensity score is estimated or supplied to distance as a
vector, the options are "none", "treated", "control", or "both". For "none",
no units are discarded for common support. Otherwise, units whose propen-
sity scores fall outside the corresponding region are discarded. Can also be a
logical vector where TRUE indicates the unit is to be discarded. Default is
"none" for no common support restriction. See Details.

reestimate if discard is not "none" and propensity scores are estimated, whether to re-
estimate the propensity scores in the remaining sample. Default is FALSE to use
the propensity scores estimated in the original sample.

s.weights an optional numeric vector of sampling weights to be incorporated into propen-
sity score models and balance statistics. Can also be specified as a string con-
taining the name of variable in data to be used or a one-sided formula with
the variable on the right-hand side (e.g., ~ SW). Not all propensity score models
accept sampling weights; see distance for information on which do and do not,
and see vignette("sampling-weights") for details on how to use sampling
weights in a matching analysis.



18 matchit

replace for methods that allow it, whether matching should be done with replacement
(TRUE), where control units are allowed to be matched to several treated units,
or without replacement (FALSE), where control units can only be matched to
one treated unit each. See the individual methods pages for information on
whether and how this argument is used. Default is FALSE for matching without
replacement.

m.order for methods that allow it, the order that the matching takes place. Allowable
options depend on the matching method but include "largest", where match-
ing takes place in descending order of distance measures; "smallest", where
matching takes place in ascending order of distance measures; "random", where
matching takes place in a random order; and "data" where matching takes place
based on the order of units in the data. When m.order = "random", results may
differ across different runs of the same code unless a seed is set and specified
with set.seed(). See the individual methods pages for information on whether
and how this argument is used. The default of NULL corresponds to "largest"
when a propensity score is estimated or supplied as a vector and "data" other-
wise.

caliper for methods that allow it, the width(s) of the caliper(s) to use in matching.
Should be a numeric vector with each value named according to the variable
to which the caliper applies. To apply to the distance measure, the value should
be unnamed. See the individual methods pages for information on whether and
how this argument is used. The default is NULL for no caliper.

std.caliper logical; when a caliper is specified, whether the the caliper is in standard de-
viation units (TRUE) or raw units (FALSE). Can either be of length 1, applying to
all calipers, or of length equal to the length of caliper. Default is TRUE.

ratio for methods that allow it, how many control units should be matched to each
treated unit in k:1 matching. Should be a single integer value. See the individual
methods pages for information on whether and how this argument is used. The
default is 1 for 1:1 matching.

verbose logical; whether information about the matching process should be printed to
the console. What is printed depends on the matching method. Default is FALSE
for no printing other than warnings.

include.obj logical; whether to include any objects created in the matching process in the
output, i.e., by the functions from other packages matchit() calls. What is
included depends on the matching method. Default is FALSE.

... additional arguments passed to the functions used in the matching process. See
the individual methods pages for information on what additional arguments are
allowed for each method. Ignored for print().

x a matchit object.

Details

Details for the various matching methods can be found at the following help pages:

• method_nearest for nearest neighbor matching

• method_optimal for optimal pair matching

• method_full for optimal full matching

• method_genetic for genetic matching

• method_cem for coarsened exact matching



matchit 19

• method_exact for exact matching

• method_cardinality for cardinality and template matching

• method_subclass for subclassification

The pages contain information on what the method does, which of the arguments above are allowed
with them and how they are interpreted, and what additional arguments can be supplied to further
tune the method. Note that the default method with no arguments supplied other than formula and
data is 1:1 nearest neighbor matching without replacement on a propensity score estimated using a
logistic regression of the treatment on the covariates. This is not the same default offered by other
matching programs, such as those in Matching, teffects in Stata, or PROC PSMATCH in SAS, so
care should be taken if trying to replicate the results of those programs.

When method = NULL, no matching will occur, but any propensity score estimation and common
support restriction will. This can be a simple way to estimate the propensity score for use in future
matching specifications without having to re-estimate it each time. The matchit() output with no
matching can be supplied to summary() to examine balance prior to matching on any of the included
covariates and on the propensity score if specified. All arguments other than distance, discard,
and reestimate will be ignored.

See distance for details on the several ways to specify the distance, link, and distance.options
arguments to estimate propensity scores and create distance measures.

When the treatment variable is not a 0/1 variable, it will be coerced to one and returned as such
in the matchit() output (see section Value, below). The following rules are used: 1) if 0 is one
of the values, it will be considered the control and the other value the treated; 2) otherwise, if the
variable is a factor, levels(treat)[1] will be considered control and the other variable the treated;
3) otherwise, sort(unique(treat))[1] will be considered control and the other value the treated.
It is safest to ensure the treatment variable is a 0/1 variable.

The discard option implements a common support restriction. It can only be used when a distance
measure is an estimated propensity score or supplied as a vector and is ignored for some matching
methods. When specified as "treated", treated units whose distance measure is outside the range
of distance measures of the control units will be discarded. When specified as "control", control
units whose distance measure is outside the range of distance measures of the treated units will be
discarded. When specified as "both", treated and control units whose distance measure is outside
the intersection of the range of distance measures of the treated units and the range of distance mea-
sures of the control units will be discarded. When reestimate = TRUE and distance corresponds
to a propensity score-estimating function, the propensity scores are re-estimated in the remaining
units prior to being used for matching or calipers.

Caution should be used when interpreting effects estimated with various values of estimand. Set-
ting estimand = "ATT" doesn’t necessarily mean the average treatment effect in the treated is be-
ing estimated; it just means that for matching methods, treated units will be untouched and given
weights of 1 and control units will be matched to them (and the opposite for estimand = "ATC"). If
a caliper is supplied or treated units are removed for common support or some other reason (e.g.,
lacking matches when using exact matching), the actual estimand targeted is not the ATT but the
treatment effect in the matched sample. The argument to estimand simply triggers which units are
matched to which, and for stratification-based methods (exact matching, CEM, full matching, and
subclassification), determines the formula used to compute the stratification weights.

How Matching Weights Are Computed:
Matching weights are computed in one of two ways depending on whether matching was done
with replacement or not.
For matching without replacement (except for cardinality matching), each unit is assigned to a
subclass, which represents the pair they are a part of (in the case of k:1 matching) or the stra-
tum they belong to (in the case of exact matching, coarsened exact matching, full matching, or



20 matchit

subclassification). The formula for computing the weights depends on the argument supplied to
estimand. A new stratum "propensity score" (p) is computed as the proportion of units in each
stratum that are in the treated group, and all units in that stratum are assigned that propensity
score. Weights are then computed using the standard formulas for inverse probability weights:
for the ATT, weights are 1 for the treated units and p/(1-p) for the control units; for the ATC,
weights are (1-p)/p for the treated units and 1 for the control units; for the ATE, weights are 1/p
for the treated units and 1/(1-p) for the control units. For cardinality matching, all matched units
receive a weight of 1.
For matching with replacement, units are not assigned to unique strata. For the ATT, each treated
unit gets a weight of 1. Each control unit is weighted as the sum of the inverse of the number of
control units matched to the same treated unit across its matches. For example, if a control unit
was matched to a treated unit that had two other control units matched to it, and that same control
was matched to a treated unit that had one other control unit matched to it, the control unit in
question would get a weight of 1/3 + 1/2 = 5/6. For the ATC, the same is true with the treated and
control labels switched. The weights are computed using the match.matrix component of the
matchit() output object.
In each treatment group, weights are divided by the mean of the nonzero weights in that treatment
group to make the weights sum to the number of units in that treatment group. If sampling
weights are included through the s.weights argument, they will be included in the matchit()
output object but not incorporated into the matching weights. match.data(), which extracts the
matched set from a matchit object, combines the matching weights and sampling weights.

Value

When method is something other than "subclass", a matchit object with the following compo-
nents:

match.matrix a matrix containing the matches. The rownames correspond to the treated units
and the values in each row are the names (or indices) of the control units matched
to each treated unit. When treated units are matched to different numbers of con-
trol units (e.g., with exact matching or matching with a caliper), empty spaces
will be filled with NA. Not included when method is "full", "cem" (unless k2k
= TRUE), "exact", or "cardinality".

subclass a factor containing matching pair/stratum membership for each unit. Unmatched
units will have a value of NA. Not included when replace = TRUE.

weights a numeric vector of estimated matching weights. Unmatched and discarded units
will have a weight of zero.

model the fit object of the model used to estimate propensity scores when distance
is specified and not "mahalanobis" or a numeric vector. When reestimate =
TRUE, this is the model estimated after discarding units.

X a data frame of covariates mentioned in formula, exact, mahvars, and antiexact.

call the matchit() call.

info information on the matching method and distance measures used.

estimand the argument supplied to estimand.

formula the formula supplied.

treat a vector of treatment status converted to zeros (0) and ones (1) if not already in
that format.

distance a vector of distance values (i.e., propensity scores) when distance is supplied
as a method of estimating propensity scores or a numeric vector.



matchit 21

discarded a logical vector denoting whether each observation was discarded (TRUE) or not
(FALSE) by the argument to discard.

s.weights the vector of sampling weights supplied to the s.weights argument, if any.

exact a one-sided formula containing the variables, if any, supplied to exact.

mahvars a one-sided formula containing the variables, if any, supplied to mahvars.

obj when include.obj = TRUE, an object containing the intermediate results of the
matching procedure. See the individual methods pages for what this component
will contain.

When method = "subclass", a matchit.subclass object with the same components as above ex-
cept that match.matrix is excluded and one additional component, q.cut, is included, containing
a vector of the distance measure cutpoints used to define the subclasses. See method_subclass for
details.

Author(s)

Daniel Ho (<dho@law.stanford.edu>); Kosuke Imai (<imai@harvard.edu>); Gary King (<king@harvard.edu>);
Elizabeth Stuart (<estuart@jhsph.edu>)

Version 4.0.0 update by Noah Greifer (<noah.greifer@gmail.com>)

References

Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2007). Matching as Nonparametric Preprocessing for
Reducing Model Dependence in Parametric Causal Inference. Political Analysis, 15(3), 199–236.
doi:10.1093/pan/mpl013

Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric Preprocessing for
Parametric Causal Inference. Journal of Statistical Software, 42(8). doi:10.18637/jss.v042.i08

See Also

summary.matchit() for balance assessment after matching, plot.matchit() for plots of covariate
balance and propensity score overlap after matching.

vignette("MatchIt") for an introduction to matching with MatchIt; vignette("matching-methods")
for descriptions of the variety of matching methods and options available; vignette("assessing-balance")
for information on assessing the quality of a matching specification; vignette("estimating-effects")
for instructions on how to estimate treatment effects after matching; and vignette("sampling-weights")
for a guide to using MatchIt with sampling weights.

Examples

data("lalonde")

# Default: 1:1 NN PS matching w/o replacement

m.out1 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde)

m.out1
summary(m.out1)

# 1:1 NN Mahalanobis distance matching w/ replacement and
# exact matching on married and race

https://doi.org/10.1093/pan/mpl013
https://doi.org/10.18637/jss.v042.i08


22 method_cardinality

m.out2 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
distance = "mahalanobis", replace = TRUE,
exact = ~ married + race)

m.out2
summary(m.out2, un = TRUE)

# 2:1 NN Mahalanobis distance matching within caliper defined
# by a probit pregression PS

m.out3 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
distance = "glm", link = "probit",
mahvars = ~ age + educ + re74 + re75,
caliper = .1, ratio = 2)

m.out3
summary(m.out3, un = TRUE)

# Optimal full PS matching for the ATE within calipers on
# PS, age, and educ

m.out4 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "full", estimand = "ATE",
caliper = c(.1, age = 2, educ = 1),
std.caliper = c(TRUE, FALSE, FALSE))

m.out4
summary(m.out4, un = TRUE)

# Subclassification on a logistic PS with 10 subclasses after
# discarding controls outside common support of PS

s.out1 <- matchit(treat ~ age + educ + race + nodegree +
married + re74 + re75, data = lalonde,
method = "subclass", distance = "glm",
discard = "control", subclass = 10)

s.out1
summary(s.out1, un = TRUE)

method_cardinality Cardinality Matching

Description

In matchit(), setting method = "cardinality" performs cardinality matching and other forms of
matching that use mixed integer programming. Rather than forming pairs, cardinality matching se-
lects the largest subset of units that satisfies user-supplied balance constraints on mean differences.
One of several available optimization programs can be used to solve the mixed integer program.
The default is the GLPK library as implemented in the Rglpk package, but performance can be
dramatically improved using Gurobi and the gurobi package, for which there is a free academic
license.

This page details the allowable arguments with method = "cardinality". See matchit() for an
explanation of what each argument means in a general context and how it can be specified.



method_cardinality 23

Below is how matchit() is used for cardinality matching:

matchit(formula,
data = NULL,
method = "cardinality",
estimand = "ATT",
exact = NULL,
s.weights = NULL,
ratio = 1,
verbose = FALSE,
tols = .05,
std.tols = TRUE,
solver = "glpk",
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be bal-
anced.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "cardinality".

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". See Details.

exact for which variables exact matching should take place. Separate optimization
will occur within each subgroup of the exact matching variables.

s.weights the variable containing sampling weights to be incorporated into the optimiza-
tion. The balance constraints refer to the product of the sampling weights and
the matching weights, and the sum of the product of the sampling and matching
weights will be maximized.

ratio the desired ratio of control to treated units. Can be set to NA to maximize sample
size without concern for this ratio. See Details.

verbose logical; whether information about the matching process should be printed to
the console.

... additional arguments that control the matching specification:

tols numeric; a vector of imbalance tolerances for mean differences, one for
each covariate in formula. If only one value is supplied, it is applied to all.
See std.tols below. Default is .05 for standardized mean differences of
at most .05 for all covariates between the treatment groups in the matched
sample.

std.tols logical; whether each entry in tols corresponds to a raw or stan-
dardized mean difference. If only one value is supplied, it is applied to all.
Default is TRUE for standardized mean differences. The standardization fac-
tor is the pooled standard deviation when estimand = "ATE", the standard
deviation of the treated group when estimand = "ATT", and the standard
deviation of the control group when estimand = "ATC" (the same as used
in summary.matchit()).



24 method_cardinality

solver the name of solver to use to solve the optimization problem. Avail-
able options include "glpk", "symphony", and "gurobi" for GLPK (im-
plemented in the Rglpk package), SYMPHONY (implemented in the Rsym-
phony package), and Gurobi (implemented in the gurobi package), respec-
tively. The differences between them are in speed and solving ability.
GLPK (the default) is the easiest to install, but Gurobi is recommended as
it consistently outperforms other solvers and can find solutions even when
others can’t, and in less time. Gurobi is proprietary but can be used with a
free trial or academic license. SYMPHONY may not produce reproducible
results, even with a seed set.

time the maximum amount of time before the optimization routine aborts, in
seconds. Default is 120 (2 minutes). For large problems, this should be set
much higher.

The arguments distance (and related arguments), mahvars, replace, m.order,
and caliper (and related arguments) are ignored with a warning.

Details

Cardinality and Template Matching:
Two types of matching are available with method = "cardinality": cardinality matching and
template matching.
Cardinality matching finds the largest matched set that satisfies the balance constraints between
treatment groups, with the additional constraint that the ratio of the number of matched control
to matched treated units is equal to ratio (1 by default), mimicking k:1 matching. When not
all treated units are included in the matched set, the estimand no longer corresponds to the ATT,
so cardinality matching should be avoided if retaining the ATT is desired. To request cardinality
matching, estimand should be set to "ATT" or "ATC" and ratio should be set to a positive integer.
1:1 cardinality matching is the default method when no arguments are specified.
Template matching finds the largest matched set that satisfies balance constraints between each
treatment group and a specified target sample. When estimand = "ATT", it will find the largest
subset of the control units that satisfies the balance constraints with respect to the treated group,
which is left intact. When estimand = "ATE", it will find the largest subsets of the treated group
and of the control group that are balanced to the overall sample. To request template matching for
the ATT, estimand should be set to "ATT" and ratio to NA. To request template matching for the
ATE, estimand should be set to "ATE" and ratio can be set either to NA to maximize the size of
each sample independently or to a positive integer to ensure that the ratio of matched control units
to matched treated treats is fixed, mimicking k:1 matching. Unlike cardinality matching, template
matching retains the requested estimand if a solution is found.
Neither method involves creating pairs in the matched set, but it is possible to perform an addi-
tional round of pairing within the matched sample after cardinality matching or template matching
for the ATE with a fixed sample size ratio. See Examples for an example of optimal pair matching
after cardinality matching. The balance will not change, but additional precision and robustness
can be gained by forming the pairs.
The weights are scaled so that the sum of the weights in each group is equal to the number
of matched units in the smaller group when cardinality matching or template matching for the
ATE, and scaled so that the sum of the weights in the control group is equal to the number of
treated units when template matching for the ATT. When the sample sizes of the matched groups
is the same (i.e., when ratio = 1), no scaling is done. Robust standard errors should be used
in effect estimation after cardinality or template matching (and cluster-robust standard errors if
additional pairing is done in the matched sample). See vignette("estimating-effects") for
more information.



method_cardinality 25

Specifying Balance Constraints:
The balance constraints are on the (standardized) mean differences between the matched treatment
groups for each covariate. Balance constraints should be set by supplying arguments to tols
and std.tols. For example, setting tols = .1 and std.tols = TRUE requests that all the mean
differences in the matched sample should be within .1 standard deviations for each covariate.
Different tolerances can be set for different variables; it might be beneficial to constrain the mean
differences for highly prognostic covariates more tightly than for other variables. For example,
one could specify tols = c(.001, .05), std.tols = c(TRUE, FALSE) to request that the
standardized mean difference for the first covariate is less than .001 and the raw mean difference
for the second covariate is less than .05. The values should be specified in the order they appear
in formula, except when interactions are present. One can run the following code:

MatchIt:::get_assign(model.matrix(~X1*X2 + X3, data = data))[-1]

which will output a vector of numbers and the variable to which each number corresponds; the
first entry in tols corresponds to the variable labeled 1, the second to the variable labeled 2, etc.

Dealing with Errors and Warnings:
When the optimization cannot be solved at all, or at least within the time frame specified in the
argument to time, an error or warning will appear. Unfortunately, it is hard to know exactly the
cause of the failure and what measures should be taken to rectify it.
A warning that says "The optimizer failed to find an optimal solution in the time alotted.
The returned solution may not be optimal." usually means that an optimal solution may be
possible to find with more time, in which case time should be increased or a faster solver should
be used. Even with this warning, a potentially usable solution will be returned, so don’t automat-
ically take it to mean the optimization failed. Sometimes, when there are multiple solutions with
the same resulting sample size, the optimizers will stall at one of them, not thinking it has found
the optimum. The result should be checked to see if it can be used as the solution.
An error that says "The optimization problem may be infeasible." usually means that there
is a issue with the optimization problem, i.e., that there is no possible way to satisfy the constraints.
To rectify this, one can try relaxing the constraints by increasing the value of tols or use another
solver. Sometimes Gurobi can solve problems that the other solvers cannot.

Outputs

Most outputs described in matchit() are returned with method = "cardinality". The match.matrix
and subclass components are omitted because no pairing or subclassification is done. When
include.obj = TRUE in the call to matchit(), the output of the optimization function will be in-
cluded in the output. When exact is specified, this will be a list of such objects, one for each
stratum of the exact variables.

References

In a manuscript, you should reference the solver used in the optimization. For example, a sentence
might read:

Cardinality matching was performed using the MatchIt package (Ho, Imai, King, & Stuart, 2011)
in R with the optimization performed by GLPK.

See vignette("matching-methods") for more literature on cardinality matching.

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().



26 method_cardinality

designmatch, which performs cardinality and template matching with many more options and more
flexibility. The implementations of cardinality matching differ between MatchIt and designmatch,
so their results might differ.

optweight, which offers similar functionality but in the context of weighting rather than matching.

Examples

data("lalonde")

#Choose your solver; "gurobi" is best, "glpk" is free and
#easiest to install
solver <- "glpk"

# 1:1 cardinality matching
m.out1 <- matchit(treat ~ age + educ + re74,

data = lalonde, method = "cardinality",
estimand = "ATT", ratio = 1,
tols = .15, solver = solver)

m.out1
summary(m.out1)

# Template matching for the ATT
m.out2 <- matchit(treat ~ age + educ + re74,

data = lalonde, method = "cardinality",
estimand = "ATT", ratio = NA,
tols = .15, solver = solver)

m.out2
summary(m.out2, un = FALSE)

# Template matching for the ATE
m.out3 <- matchit(treat ~ age + educ + re74,

data = lalonde, method = "cardinality",
estimand = "ATE", ratio = NA,
tols = .15, solver = solver)

m.out3
summary(m.out3, un = FALSE)

# Pairing after 1:1 cardinality matching:
m.out4 <- matchit(treat ~ age + educ + re74,

data = lalonde, method = "nearest",
distance = "mahalanobis",
discard = m.out1$weights == 0)

# Note that balance doesn't change but pair distances
# are lower for the paired-upon variables
summary(m.out4, un = FALSE)
summary(m.out1, un = FALSE)

# In these examples, a high tol was used and
# few covariate matched on in order to not take too long;
# with real data, tols should be much lower and more
# covariates included if possible.

https://CRAN.R-project.org/package=designmatch
https://CRAN.R-project.org/package=optweight


method_cem 27

method_cem Coarsened Exact Matching

Description

In matchit(), setting method = "cem" performs coarsened exact matching. With coarsened exact
matching, covariates are coarsened into bins, and a complete cross of the coarsened covariates is
used to form subclasses defined by each combination of the coarsened covariate levels. Any subclass
that doesn’t contain both treated and control units is discarded, leaving only subclasses containing
treatment and control units that are exactly equal on the coarsened covariates. The coarsening
process can be controlled by an algorithm or by manually specifying cutpoints and groupings. The
benefits of coarsened exact matching are that the tradeoff between exact matching and approximate
balancing can be managed to prevent discarding too many units, which can otherwise occur with
exact matching.

This page details the allowable arguments with method = "cem". See matchit() for an explanation
of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for coarsened exact matching:

matchit(formula,
data = NULL,
method = "cem",
estimand = "ATT",
s.weights = NULL,
verbose = FALSE,
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used in
creating the subclasses defined by a full cross of the coarsened covariate levels.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "cem".

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". The estimand controls how the weights are computed; see
the Computing Weights section at matchit() for details. When k2k = TRUE (see
below), estimand also controls how the matching is done.

s.weights the variable containing sampling weights to be incorporated into balance statis-
tics or the scaling factors when k2k = TRUE and certain methods are used.

verbose logical; whether information about the matching process should be printed to
the console.

... additional arguments to control the matching process.

grouping a named list with an (optional) entry for each categorical variable to
be matched on. Each element should itself be a list, and each entry of the
sublist should be a vector containing levels of the variable that should be
combined to form a single level. Any categorical variables not included in
grouping will remain as they are in the data, which means exact matching,
with no coarsening, will take place on these variables. See Details.



28 method_cem

cutpoints a named list with an (optional) entry for each numeric variable to be
matched on. Each element describes a way of coarsening the correspond-
ing variable. They can be a vector of cutpoints that demarcate bins, a single
number giving the number of bins, or a string corresponding to a method
of computing the number of bins. Allowable strings include "sturges",
"scott", and "fd", which use the functions grDevices::nclass.Sturges(),
grDevices::nclass.scott(), and grDevices::nclass.FD(), respectively.
The default is "sturges" for variables that are not listed or if no argument
is supplied. Can also be a single value to be applied to all numeric variables.
See Details.

k2k logical; whether 1:1 matching should occur within the matched strata. If
TRUE nearest neighbor matching without replacement will take place within
each stratum, and any unmatched units will be dropped (e.g., if there are
more treated than control units in the stratum, the treated units without a
match will be dropped). The k2k.method argument controls how the dis-
tance between units is calculated.

k2k.method character; how the distance between units should be calculated if
k2k = TRUE. Allowable arguments include NULL (for random matching), any
argument to distance() for computing a distance matrix from covariates
(e.g., "mahalanobis"), or any allowable argument to method in dist().
Matching will take place on the original (non-coarsened) variables. The
default is "mahalanobis".

mpower if k2k.method = "minkowski", the power used in creating the distance.
This is passed to the p argument of dist().

The arguments distance (and related arguments), exact, mahvars, discard
(and related arguments), replace, m.order, caliper (and related arguments),
and ratio are ignored with a warning.

Details

If the coarsening is such that there are no exact matches with the coarsened variables, the grouping
and cutpoints arguments can be used to modify the matching specification. Reducing the number
of cutpoints or grouping some variable values together can make it easier to find matches. See
Examples below. Removing variables can also help (but they will likely not be balanced unless
highly correlated with the included variables). To take advantage of coarsened exact matching
without failing to find any matches, the covariates can be manually coarsened outside of matchit()
and then supplied to the exact argument in a call to matchit() with another matching method.

Setting k2k = TRUE is equivalent to first doing coarsened exact matching with k2k = FALSE and then
supplying stratum membership as an exact matching variable (i.e., in exact) to another call to
matchit() with method = "nearest", distance = "mahalanobis" and an argument to discard
denoting unmatched units. It is also equivalent to performing nearest neighbor matching supplying
coarsened versions of the variables to exact, except that method = "cem" automatically coarsens the
continuous variables. The estimand argument supplied with method = "cem" functions the same
way it would in these alternate matching calls, i.e., by determining the "focal" group that controls
the order of the matching.

Grouping and Cutpoints:
The grouping and cutpoints arguments allow one to fine-tune the coarsening of the covariates.
grouping is used for combining categories of categorical covariates and cutpoints is used for
binning numeric covariates. The values supplied to these arguments should be iteratively changed
until a matching solution that balances covariate balance and remaining sample size is obtained.
The arguments are described below.



method_cem 29

The argument to grouping must be a list, where each component has the name of a categor-
ical variable, the levels of which are to be combined. Each component must itself be a list;
this list contains one or more vectors of levels, where each vector corresponds to the levels that
should be combined into a single category. For example, if a variable amount had levels "none",
"some", and "a lot", one could enter grouping = list(amount = list(c("none"), c("some",
"a lot"))), which would group "some" and "a lot" into a single category and leave "none" in
its own category. Any levels left out of the list for each variable will be left alone (so c("none")
could have been omitted from the previous code). Note that if a categorical variable does not
appear in grouping, it will not be coarsened, so exact matching will take place on it. grouping
should not be used for numeric variables; use cutpoints, described below, instead.
The argument to cutpoints must also be a list, where each component has the name of a numeric
variables that is to be binned. (As a shortcut, it can also be a single value that will be applied
to all numeric variables). Each component can take one of three forms: a vector of cutpoints
that separate the bins, a single number giving the number of bins, or a string corresponding to an
algorithm used to compute the number of bins. Any values at a boundary will be placed into the
higher bin; e.g., if the cutpoints were (c(0, 5, 10)), values of 5 would be placed into the same
bin as values of 6, 7, 8, or 9, and values of 10 would be placed into a different bin. Internally,
values of -Inf and Inf are appended to the beginning and end of the range. When given as a
single number defining the number of bins, the bin boundaries are the maximum and minimum
values of the variable with bin boundaries evenly spaced between them, i.e., not quantiles. A
value of 0 will not perform any binning (equivalent to exact matching on the variable), and a
value of 1 will remove the variable from the exact matching variables but it will be still used for
pair matching when k2k = TRUE. The allowable strings include "sturges", "scott", and "fd",
which use the corresponding binning method, and "q#" where # is a number, which splits the
variable into # equally-sized bins (i.e., quantiles).
An example of a way to supply an argument to cutpoints would be the following:

cutpoints = list(X1 = 4,
X2 = c(1.7, 5.5, 10.2),
X3 = "scott",
X4 = "q5")

This would split X1 into 4 bins, X2 into bins based on the provided boundaries, X3 into a number
of bins determined by grDevices::nclass.scott(), and X4 into quintiles. All other numeric
variables would be split into a number of bins determined by grDevices::nclass.Sturges(),
the default.

Outputs

All outputs described in matchit() are returned with method = "cem" except for match.matrix.
When k2k = TRUE, a match.matrix component with the matched pairs is also included. include.obj
is ignored.

Note

This method does not rely on the cem package, instead using code written for MatchIt, but its design
is based on the original cem functions. Versions of MatchIt prior to 4.1.0 did rely on cem, so results
may differ between versions. There are a few differences between the ways MatchIt and cem (and
older versions of MatchIt) differ in executing coarsened exact matching, described below.

• In MatchIt, when a single number is supplied to cutpoints, it describes the number of bins;
in cem, it describes the number of cutpoints separating bins. The MatchIt method is closer to
how hist() processes breaks points to create bins.



30 method_cem

• In MatchIt, values on the cutpoint boundaries will be placed into the higher bin; in cem, they
are placed into the lower bin. To avoid consequences of this choice, ensure the bin boundaries
do not coincide with observed values of the variables.

• When cutpoints are used, "ss" (for Shimazaki-Shinomoto’s rule) can be used in cem but
not in MatchIt.

• When k2k = TRUE, MatchIt matches on the original variables (scaled), whereas cem matches
on the coarsened variables. Because the variables are already exactly matched on the coars-
ened variables, matching in cem is equivalent to random matching within strata.

• When k2k = TRUE, in MatchIt matched units are identified by pair membership, and the orig-
inal stratum membership prior to 1:1 matching is discarded. In cem, pairs are not identified
beyond the stratum the members are part of.

• When k2k = TRUE, k2k.method = "mahalanobis" can be requested in MatchIt but not in cem.

References

In a manuscript, you don’t need to cite another package when using method = "cem" because the
matching is performed completely within MatchIt. For example, a sentence might read:

Coarsened exact matching was performed using the MatchIt package (Ho, Imai, King, & Stuart,
2011) in R.

It would be a good idea to cite the following article, which develops the theory behind coarsened
exact matching:

Iacus, S. M., King, G., & Porro, G. (2012). Causal Inference without Balance Checking: Coarsened
Exact Matching. Political Analysis, 20(1), 1–24. doi:10.1093/pan/mpr013

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

The cem package, upon which this method is based and which provided the workhorse in previous
versions of MatchIt.

method_exact for exact matching, which performs exact matching on the covariates without coars-
ening.

Examples

data("lalonde")

# Coarsened exact matching on age, race, married, and educ with educ
# coarsened into 5 bins and race coarsened into 2 categories,
# grouping "white" and "hispan" together
m.out1 <- matchit(treat ~ age + race + married + educ, data = lalonde,

method = "cem", cutpoints = list(educ = 5),
grouping = list(race = list(c("white", "hispan"),

c("black"))))
m.out1
summary(m.out1)

# The same but requesting 1:1 Mahalanobis distance matching with
# the k2k and k2k.method argument. Note the remaining number of units
# is smaller than when retaining the full matched sample.
m.out2 <- matchit(treat ~ age + race + married + educ, data = lalonde,

method = "cem", cutpoints = list(educ = 5),
grouping = list(race = list(c("white", "hispan"),

https://doi.org/10.1093/pan/mpr013


method_exact 31

"black")),
k2k = TRUE, k2k.method = "mahalanobis")

m.out2
summary(m.out2, un = FALSE)

method_exact Exact Matching

Description

In matchit(), setting method = "exact" performs exact matching. With exact matching, a com-
plete cross of the covariates is used to form subclasses defined by each combination of the covariate
levels. Any subclass that doesn’t contain both treated and control units is discarded, leaving only
subclasses containing treatment and control units that are exactly equal on the included covariates.
The benefits of exact matching are that confounding due to the covariates included is completely
eliminated, regardless of the functional form of the treatment or outcome models. The problem is
that typically many units will be discarded, sometimes dramatically reducing precision and chang-
ing the target population of inference. To use exact matching in combination with another matching
method (i.e., to exact match on some covariates and some other form of matching on others), use
the exact argument with that method.

This page details the allowable arguments with method = "exact". See matchit() for an explana-
tion of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for exact matching:

matchit(formula,
data = NULL,
method = "exact",
estimand = "ATT",
s.weights = NULL,
verbose = FALSE,
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used in
creating the subclasses defined by a full cross of the covariate levels.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "exact".
estimand a string containing the desired estimand. Allowable options include "ATT",

"ATC", and "ATE". The estimand controls how the weights are computed; see
the Computing Weights section at matchit() for details.

s.weights the variable containing sampling weights to be incorporated into balance statis-
tics. These weights do not affect the matching process.

verbose logical; whether information about the matching process should be printed to
the console.

... ignored.
The arguments distance (and related arguments), exact, mahvars, discard
(and related arguments), replace, m.order, caliper (and related arguments),
and ratio are ignored with a warning.



32 method_full

Outputs

All outputs described in matchit() are returned with method = "exact" except for match.matrix.
This is because matching strata are not indexed by treated units as they are in some other forms of
matching. include.obj is ignored.

References

In a manuscript, you don’t need to cite another package when using method = "exact" because the
matching is performed completely within MatchIt. For example, a sentence might read:

Exact matching was performed using the MatchIt package (Ho, Imai, King, & Stuart, 2011) in R.

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit(). The exact
argument can be used with other methods to perform exact matching in combination with other
matching methods.

method_cem for coarsened exact matching, which performs exact matching on coarsened versions
of the covariates.

Examples

data("lalonde")

# Exact matching on age, race, married, and educ
m.out1 <- matchit(treat ~ age + race + married + educ, data = lalonde,

method = "exact")
m.out1
summary(m.out1)

method_full Optimal Full Matching

Description

In matchit(), setting method = "full" performs optimal full matching, which is a form of sub-
classification wherein all units, both treatment and control (i.e., the "full" sample), are assigned to
a subclass and receive at least one match. The matching is optimal in the sense that that sum of
the absolute distances between the treated and control units in each subclass is as small as possible.
The method relies on and is a wrapper for optmatch::fullmatch().

Advantages of optimal full matching include that the matching order is not required to be specified,
units do not need to be discarded, and it is less likely that extreme within-subclass distances will
be large, unlike with standard subclassification. The primary output of full matching is a set of
matching weights that can be applied to the matched sample; in this way, full matching can be seen
as a robust alternative to propensity score weighting, robust in the sense that the propensity score
model does not need to be correct to estimate the treatment effect without bias. Note: with large
samples, the optimization may fail or run very slowly; one can try using method = "quick" instead,
which also performs full matching but can be much faster.

This page details the allowable arguments with method = "full". See matchit() for an explana-
tion of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for optimal full matching:



method_full 33

matchit(formula,
data = NULL,
method = "full",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
exact = NULL,
mahvars = NULL,
anitexact = NULL,
discard = "none",
reestimate = FALSE,
s.weights = NULL,
caliper = NULL,
std.caliper = TRUE,
verbose = FALSE,
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used
in creating the distance measure used in the matching. This formula will be
supplied to the functions that estimate the distance measure.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "full".

distance the distance measure to be used. See distance for allowable options. Can be
supplied as a distance matrix.

link when distance is specified as a method of estimating propensity scores, an
additional argument controlling the link function used in estimating the distance
measure. See distance for allowable options with each option.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance.

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". The estimand controls how the weights are computed; see
the Computing Weights section at matchit() for details.

exact for which variables exact matching should take place.

mahvars for which variables Mahalanobis distance matching should take place when
distance corresponds to a propensity score (e.g., for caliper matching or to
discard units for common support). If specified, the distance measure will not
be used in matching.

antiexact for which variables ant-exact matching should take place. Anti-exact matching
is processed using optmatch::antiExactMatch().

discard a string containing a method for discarding units outside a region of common
support. Only allowed when distance corresponds to a propensity score.

reestimate if discard is not "none", whether to re-estimate the propensity score in the
remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propensity
score models and balance statistics.



34 method_full

caliper the width(s) of the caliper(s) used for caliper matching. Calipers are processed
by optmatch::caliper(). See Notes and Examples.

std.caliper logical; when calipers are specified, whether they are in standard deviation
units (TRUE) or raw units (FALSE).

verbose logical; whether information about the matching process should be printed to
the console.

... additional arguments passed to optmatch::fullmatch(). Allowed arguments
include min.controls, max.controls, omit.fraction, mean.controls, tol,
and solver. See the optmatch::fullmatch() documentation for details. In
general, tol should be set to a low number (e.g., 1e-7) to get a more precise
solution.
The arguments replace, m.order, and ratio are ignored with a warning.

Details

Mahalanobis Distance Matching:
Mahalanobis distance matching can be done one of two ways:

1. If no propensity score needs to be estimated, distance should be set to "mahalanobis", and
Mahalanobis distance matching will occur using all the variables in formula. Arguments to
discard and mahvars will be ignored, and a caliper can only be placed on named variables.
For example, to perform simple Mahalanobis distance matching, the following could be run:

matchit(treat ~ X1 + X2, method = "nearest",
distance = "mahalanobis")

With this code, the Mahalanobis distance is computed using X1 and X2, and matching occurs
on this distance. The distance component of the matchit() output will be empty.

2. If a propensity score needs to be estimated for any reason, e.g., for common support with
discard or for creating a caliper, distance should be whatever method is used to estimate
the propensity score or a vector of distance measures, i.e., it should not be "mahalanobis".
Use mahvars to specify the variables used to create the Mahalanobis distance. For example,
to perform Mahalanobis within a propensity score caliper, the following could be run:

matchit(treat ~ X1 + X2 + X3, method = "nearest",
distance = "glm", caliper = .25,
mahvars = ~ X1 + X2)

With this code, X1, X2, and X3 are used to estimate the propensity score (using the "glm"
method, which by default is logistic regression), which is used to create a matching caliper.
The actual matching occurs on the Mahalanobis distance computed only using X1 and X2,
which are supplied to mahvars. Units whose propensity score difference is larger than the
caliper will not be paired, and some treated units may therefore not receive a match. The
estimated propensity scores will be included in the distance component of the matchit()
output. See Examples.

Outputs

All outputs described in matchit() are returned with method = "full" except for match.matrix.
This is because matching strata are not indexed by treated units as they are in some other forms of
matching. When include.obj = TRUE in the call to matchit(), the output of the call to optmatch::fullmatch()
will be included in the output. When exact is specified, this will be a list of such objects, one for
each stratum of the exact variables.



method_full 35

Note

Calipers can only be used when min.controls is left at its default.

The option "optmatch_max_problem_size" is automatically set to Inf during the matching pro-
cess, different from its default in optmatch. This enables matching problems of any size to be run,
but may also let huge, infeasible problems get through and potentially take a long time or crash R.
See optmatch::setMaxProblemSize() for more details.

References

In a manuscript, be sure to cite the following paper if using matchit() with method = "full":

Hansen, B. B., & Klopfer, S. O. (2006). Optimal Full Matching and Related Designs via Net-
work Flows. Journal of Computational and Graphical Statistics, 15(3), 609–627. doi:10.1198/
106186006X137047

For example, a sentence might read:

Optimal full matching was performed using the MatchIt package (Ho, Imai, King, & Stuart, 2011)
in R, which calls functions from the optmatch package (Hansen & Klopfer, 2006).

Theory is also developed in the following article:

Hansen, B. B. (2004). Full Matching in an Observational Study of Coaching for the SAT. Journal
of the American Statistical Association, 99(467), 609–618. doi:10.1198/016214504000000647

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

optmatch::fullmatch(), which is the workhorse.

method_optimal for optimal pair matching, which is a special case of optimal full matching,
and which relies on similar machinery. Results from method = "optimal" can be replicated with
method = "full" by setting min.controls, max.controls, and mean.controls to the desired
ratio.

method_quick for fast generalized quick matching, which is very similar to optimal full matching
but can be dramatically faster at the expense of optimality and is less customizable.

Examples

data("lalonde")

# Optimal full PS matching
m.out1 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "full")

m.out1
summary(m.out1)

# Optimal full Mahalanobis distance matching within a PS caliper
m.out2 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "full", caliper = .01,
mahvars = ~ age + educ + re74 + re75)

m.out2
summary(m.out2, un = FALSE)

# Optimal full Mahalanobis distance matching within calipers

https://doi.org/10.1198/106186006X137047
https://doi.org/10.1198/106186006X137047
https://doi.org/10.1198/016214504000000647


36 method_genetic

# of 500 on re74 and re75
m.out3 <- matchit(treat ~ age + educ + re74 + re75,

data = lalonde, distance = "mahalanobis",
method = "full",
caliper = c(re74 = 500, re75 = 500),
std.caliper = FALSE)

m.out3
summary(m.out3, addlvariables = ~race + nodegree + married,

data = lalonde, un = FALSE)

method_genetic Genetic Matching

Description

In matchit(), setting method = "genetic" performs genetic matching. Genetic matching is a
form of nearest neighbor matching where distances are computed as the generalized Mahalanobis
distance, which is a generalization of the Mahalanobis distance with a scaling factor for each co-
variate that represents the importance of that covariate to the distance. A genetic algorithm is
used to select the scaling factors. The scaling factors are chosen as those which maximize a cri-
terion related to covariate balance, which can be chosen, but which by default is the smallest p-
value in covariate balance tests among the covariates. This method relies on and is a wrapper for
Matching::GenMatch() and Matching::Match(), which use rgenoud::genoud() to perform the
optimization using the genetic algorithm.

This page details the allowable arguments with method = "genetic". See matchit() for an expla-
nation of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for genetic matching:

matchit(formula,
data = NULL,
method = "genetic",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
exact = NULL,
mahvars = NULL,
antiexact = NULL,
discard = "none",
reestimate = FALSE,
s.weights = NULL,
replace = FALSE,
m.order = NULL,
caliper = NULL,
ratio = 1,
verbose = FALSE,
...)



method_genetic 37

Arguments

formula a two-sided formula object containing the treatment and covariates to be used in
creating the distance measure used in the matching. This formula will be sup-
plied to the functions that estimate the distance measure and is used to determine
the covariates whose balance is to be optimized.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "genetic".

distance the distance measure to be used. See distance for allowable options. When
set to a method of estimating propensity scores or a numeric vector of distance
values, the distance measure is included with the covariates in formula to be
supplied to the generalized Mahalanobis distance matrix unless mahvars is spec-
ified. Otherwise, only the covariates in formula are supplied to the generalized
Mahalanobis distance matrix to have their scaling factors chosen. distance
cannot be supplied as a distance matrix. Supplying any method of comput-
ing a distance matrix (e.g., "mahalanobis") has the same effect of omitting
propensity score but does not affect how the distance between units is computed
otherwise.

link when distance is specified as a method of estimating propensity scores, an
additional argument controlling the link function used in estimating the distance
measure. See distance for allowable options with each option.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance.

estimand a string containing the desired estimand. Allowable options include "ATT" and
"ATC". See Details.

exact for which variables exact matching should take place.

mahvars when a distance corresponds to a propensity score (e.g., for caliper matching or
to discard units for common support), which covariates should be supplied to
the generalized Mahalanobis distance matrix for matching. If unspecified, all
variables in formula will be supplied to the distance matrix. Use mahvars to
only supply a subset. Even if mahvars is specified, balance will be optimized
on all covariates in formula. See Details.

antiexact for which variables ant-exact matching should take place. Anti-exact match-
ing is processed using the restrict argument to Matching::GenMatch() and
Matching::Match().

discard a string containing a method for discarding units outside a region of common
support. Only allowed when distance corresponds to a propensity score.

reestimate if discard is not "none", whether to re-estimate the propensity score in the
remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propensity
score models and balance statistics. These are also supplied to GenMatch()
for use in computing the balance t-test p-values in the process of matching.

replace whether matching should be done with replacement.

m.order the order that the matching takes place. The default is "largest" when distance
corresponds to a propensity score and "data" otherwise. See matchit() for al-
lowable options.



38 method_genetic

caliper the width(s) of the caliper(s) used for caliper matching. See Details and Exam-
ples.

std.caliper logical; when calipers are specified, whether they are in standard deviation
units (TRUE) or raw units (FALSE).

ratio how many control units should be matched to each treated unit for k:1 matching.
Should be a single integer value.

verbose logical; whether information about the matching process should be printed to
the console. When TRUE, output from GenMatch() with print.level = 2 will
be displayed. Default is FALSE for no printing other than warnings.

... additional arguments passed to Matching::GenMatch(). Potentially useful op-
tions include pop.size, max.generations, and fit.func. If pop.size is not
specified, a warning from Matching will be thrown reminding you to change it.
Note that the ties and CommonSupport arguments are set to FALSE and cannot
be changed. If distance.tolerance is not specified, it is set to 0, whereas the
default in Matching is 1e-5.

Details

In genetic matching, covariates play three roles: 1) as the variables on which balance is optimized,
2) as the variables in the generalized Mahalanobis distance between units, and 3) in estimating the
propensity score. Variables supplied to formula are always used for role (1), as the variables on
which balance is optimized. When distance corresponds to a propensity score, the covariates are
also used to estimate the propensity score (unless it is supplied). When mahvars is specified, the
named variables will form the covariates that go into the distance matrix. Otherwise, the variables
in formula along with the propensity score will go into the distance matrix. This leads to three
ways to use distance and mahvars to perform the matching:

1. When distance corresponds to a propensity score and mahvars is not specified, the covariates
in formula along with the propensity score are used to form the generalized Mahalanobis dis-
tance matrix. This is the default and most typical use of method = "genetic" in matchit().

2. When distance corresponds to a propensity score and mahvars is specified, the covariates
in mahvars are used to form the generalized Mahalanobis distance matrix. The covariates
in formula are used to estimate the propensity score and have their balance optimized by
the genetic algorithm. The propensity score is not included in the generalized Mahalanobis
distance matrix.

3. When distance is a method of computing a distance matrix (e.g.,"mahalanobis"), no propen-
sity score is estimated, and the covariates in formula are used to form the generalized Maha-
lanobis distance matrix. Which specific method is supplied has no bearing on how the distance
matrix is computed; it simply serves as a signal to omit estimation of a propensity score.

When a caliper is specified, any variables mentioned in caliper, possibly including the propensity
score, will be added to the matching variables used to form the generalized Mahalanobis distance
matrix. This is because Matching doesn’t allow for the separation of caliper variables and matching
variables in genetic matching.

Estimand:
The estimand argument controls whether control units are selected to be matched with treated
units (estimand = "ATT") or treated units are selected to be matched with control units (estimand
= "ATC"). The "focal" group (e.g., the treated units for the ATT) is typically made to be the smaller
treatment group, and a warning will be thrown if it is not set that way unless replace = TRUE.
Setting estimand = "ATC" is equivalent to swapping all treated and control labels for the treatment
variable. When estimand = "ATC", the default m.order is "smallest", and the match.matrix



method_genetic 39

component of the output will have the names of the control units as the rownames and be filled
with the names of the matched treated units (opposite to when estimand = "ATT"). Note that the
argument supplied to estimand doesn’t necessarily correspond to the estimand actually targeted;
it is merely a switch to trigger which treatment group is considered "focal". Note that while
GenMatch() and Match() support the ATE as an estimand, matchit() only supports the ATT
and ATC for genetic matching.

Outputs

All outputs described in matchit() are returned with method = "genetic". When replace =
TRUE, the subclass component is omitted. When include.obj = TRUE in the call to matchit(),
the output of the call to Matching::GenMatch() will be included in the output.

References

In a manuscript, be sure to cite the following papers if using matchit() with method = "genetic":

Diamond, A., & Sekhon, J. S. (2013). Genetic matching for estimating causal effects: A general
multivariate matching method for achieving balance in observational studies. Review of Economics
and Statistics, 95(3), 932–945. doi:10.1162/REST_a_00318

Sekhon, J. S. (2011). Multivariate and Propensity Score Matching Software with Automated Bal-
ance Optimization: The Matching package for R. Journal of Statistical Software, 42(1), 1–52.
doi:10.18637/jss.v042.i07

For example, a sentence might read:

Genetic matching was performed using the MatchIt package (Ho, Imai, King, & Stuart, 2011) in R,
which calls functions from the Matching package (Diamond & Sekhon, 2013; Sekhon, 2011).

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

Matching::GenMatch() and Matching::Match(), which do the work.

Examples

data("lalonde")

# 1:1 genetic matching with PS as a covariate
m.out1 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "genetic",
pop.size = 10) #use much larger pop.size

m.out1
summary(m.out1)

# 2:1 genetic matching with replacement without PS
m.out2 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "genetic", replace = TRUE,
ratio = 2, distance = "mahalanobis",
pop.size = 10) #use much larger pop.size

m.out2
summary(m.out2, un = FALSE)

# 1:1 genetic matching on just age, educ, re74, and re75

https://doi.org/10.1162/REST_a_00318
https://doi.org/10.18637/jss.v042.i07


40 method_nearest

# within calipers on PS and educ; other variables are
# used to estimate PS
m.out3 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "genetic",
mahvars = ~ age + educ + re74 + re75,
caliper = c(.05, educ = 2),
std.caliper = c(TRUE, FALSE),
pop.size = 10) #use much larger pop.size

m.out3
summary(m.out3, un = FALSE)

method_nearest Nearest Neighbor Matching

Description

In matchit(), setting method = "nearest" performs greedy nearest neighbor matching. A distance
is computed between each treated unit and each control unit, and, one by one, each treated unit is
assigned a control unit as a match. The matching is "greedy" in the sense that there is no action
taken to optimize an overall criterion; each match is selected without considering the other matches
that may occur subsequently.

This page details the allowable arguments with method = "nearest". See matchit() for an expla-
nation of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for nearest neighbor matching:

matchit(formula,
data = NULL,
method = "nearest",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
exact = NULL,
mahvars = NULL,
antiexact = NULL,
discard = "none",
reestimate = FALSE,
s.weights = NULL,
replace = TRUE,
m.order = NULL,
caliper = NULL,
ratio = 1,
min.controls = NULL,
max.controls = NULL,
verbose = FALSE,
...)



method_nearest 41

Arguments

formula a two-sided formula object containing the treatment and covariates to be used in
creating the distance measure used in the matching.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "nearest".

distance the distance measure to be used. See distance for allowable options. Can be
supplied as a distance matrix.

link when distance is specified as a method of estimating propensity scores, an
additional argument controlling the link function used in estimating the distance
measure. See distance for allowable options with each option.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance.

estimand a string containing the desired estimand. Allowable options include "ATT" and
"ATC". See Details.

exact for which variables exact matching should take place.

mahvars for which variables Mahalanobis distance matching should take place when
distance corresponds to a propensity score (e.g., for caliper matching or to
discard units for common support). If specified, the distance measure will not
be used in matching.

antiexact for which variables ant-exact matching should take place.

discard a string containing a method for discarding units outside a region of common
support. Only allowed when distance corresponds to a propensity score.

reestimate if discard is not "none", whether to re-estimate the propensity score in the
remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propensity
score models and balance statistics.

replace whether matching should be done with replacement.

m.order the order that the matching takes place. The default is "largest" when distance
corresponds to a propensity score and "data" otherwise. See matchit() for al-
lowable options.

caliper the width(s) of the caliper(s) used for caliper matching. See Details and Exam-
ples.

std.caliper logical; when calipers are specified, whether they are in standard deviation
units (TRUE) or raw units (FALSE).

ratio how many control units should be matched to each treated unit for k:1 matching.
For variable ratio matching, see section "Variable Ratio Matching" in Details
below.

min.controls, max.controls

for variable ratio matching, the minimum and maximum number of controls
units to be matched to each treated unit. See section "Variable Ratio Matching"
in Details below.

verbose logical; whether information about the matching process should be printed to
the console. When TRUE, a progress bar implemented using RcppProgress will
be displayed.



42 method_nearest

... additional arguments that control the matching specification:

reuse.max numeric; the maximum number of times each control can be used
as a match. Setting reuse.max = 1 corresponds to matching without re-
placement (i.e., replace = FALSE), and setting reuse.max = Inf corresponds
to traditional matching with replacement (i.e., replace = TRUE) with no
limit on the number of times each control unit can be matched. Other val-
ues restrict the number of times each control can be matched when match-
ing with replacement. replace is ignored when reuse.max is specified.

unit.id one or more variables containing a unit ID for each observation, i.e., in
case multiple observations correspond to the same unit. Once a control ob-
servation has been matched, no other observation with the same unit ID can
be used as matches. This ensures each control unit is used only once even
if it has multiple observations associated with it. Omitting this argument is
the same as giving each observation a unique ID. Ignored when replace =
TRUE.

Details

Mahalanobis Distance Matching:
Mahalanobis distance matching can be done one of two ways:

1. If no propensity score needs to be estimated, distance should be set to "mahalanobis", and
Mahalanobis distance matching will occur using all the variables in formula. Arguments to
discard and mahvars will be ignored, and a caliper can only be placed on named variables.
For example, to perform simple Mahalanobis distance matching, the following could be run:
matchit(treat ~ X1 + X2, method = "nearest",

distance = "mahalanobis")

With this code, the Mahalanobis distance is computed using X1 and X2, and matching occurs
on this distance. The distance component of the matchit() output will be empty.

2. If a propensity score needs to be estimated for any reason, e.g., for common support with
discard or for creating a caliper, distance should be whatever method is used to estimate
the propensity score or a vector of distance measures. Use mahvars to specify the variables
used to create the Mahalanobis distance. For example, to perform Mahalanobis within a
propensity score caliper, the following could be run:
matchit(treat ~ X1 + X2 + X3, method = "nearest",

distance = "glm", caliper = .25,
mahvars = ~ X1 + X2)

With this code, X1, X2, and X3 are used to estimate the propensity score (using the "glm"
method, which by default is logistic regression), which is used to create a matching caliper.
The actual matching occurs on the Mahalanobis distance computed only using X1 and X2,
which are supplied to mahvars. Units whose propensity score difference is larger than the
caliper will not be paired, and some treated units may therefore not receive a match. The
estimated propensity scores will be included in the distance component of the matchit()
output. See Examples.

Estimand:
The estimand argument controls whether control units are selected to be matched with treated
units (estimand = "ATT") or treated units are selected to be matched with control units (estimand
= "ATC"). The "focal" group (e.g., the treated units for the ATT) is typically made to be the smaller
treatment group, and a warning will be thrown if it is not set that way unless replace = TRUE.
Setting estimand = "ATC" is equivalent to swapping all treated and control labels for the treatment
variable. When estimand = "ATC", the default m.order is "smallest", and the match.matrix



method_nearest 43

component of the output will have the names of the control units as the rownames and be filled
with the names of the matched treated units (opposite to when estimand = "ATT"). Note that the
argument supplied to estimand doesn’t necessarily correspond to the estimand actually targeted;
it is merely a switch to trigger which treatment group is considered "focal".

Variable Ratio Matching:
matchit() can perform variable ratio "extremal" matching as described by Ming and Rosenbaum
(2000). This method tends to result in better balance than fixed ratio matching at the expense of
some precision. When ratio > 1, rather than requiring all treated units to receive ratio matches,
each treated unit is assigned a value that corresponds to the number of control units they will be
matched to. These values are controlled by the arguments min.controls and max.controls,
which correspond to α and β, respectively, in Ming and Rosenbaum (2000), and trigger variable
ratio matching to occur. Some treated units will receive min.controls matches and others will
receive max.controls matches (and one unit may have an intermediate number of matches); how
many units are assigned each number of matches is determined by the algorithm described in Ming
and Rosenbaum (2000, p119). ratio controls how many total control units will be matched: n1
* ratio control units will be matched, where n1 is the number of treated units, yielding the same
total number of matched controls as fixed ratio matching does.
Variable ratio matching cannot be used with Mahalanobis distance matching or when distance
is supplied as a matrix. The calculations of the numbers of control units each treated unit will be
matched to occurs without consideration of caliper or discard. ratio does not have to be an
integer but must be greater than 1 and less than n0/n1, where n0 and n1 are the number of control
and treated units, respectively. Setting ratio = n0/n1 performs a crude form of full matching
where all control units are matched. If min.controls is not specified, it is set to 1 by default.
min.controls must be less than ratio, and max.controls must be greater than ratio. See
Examples below for an example of their use.

Outputs

All outputs described in matchit() are returned with method = "nearest". When replace =
TRUE, the subclass component is omitted. include.obj is ignored.

Note

Sometimes an error will be produced by Rcpp along the lines of "function 'Rcpp_precious_remove'
not provided by package 'Rcpp'". It is not immediately clear why this happens, though this
thread appears to provide some insight. In a fresh session, run remove.packages(c("MatchIt", "Rcpp")); install.packages("MatchIt").
This should sync MatchIt and Rcpp and ensure they work correctly.

References

In a manuscript, you don’t need to cite another package when using method = "nearest" because
the matching is performed completely within MatchIt. For example, a sentence might read:

Nearest neighbor matching was performed using the MatchIt package (Ho, Imai, King, & Stuart,
2011) in R.

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

method_optimal() for optimal pair matching, which is similar to nearest neighbor matching except
that an overall distance criterion is minimized.

https://lists.r-forge.r-project.org/pipermail/rcpp-devel/2021-July/010648.html


44 method_optimal

Examples

data("lalonde")

# 1:1 greedy NN matching on the PS
m.out1 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "nearest")

m.out1
summary(m.out1)

# 3:1 NN Mahalanobis distance matching with
# replacement within a PS caliper
m.out2 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "nearest", replace = TRUE,
mahvars = ~ age + educ + re74 + re75,
ratio = 3, caliper = .02)

m.out2
summary(m.out2, un = FALSE)

# 1:1 NN Mahalanobis distance matching within calipers
# on re74 and re75 and exact matching on married and race
m.out3 <- matchit(treat ~ age + educ + re74 + re75, data = lalonde,

method = "nearest", distance = "mahalanobis",
exact = ~ married + race,
caliper = c(re74 = .2, re75 = .15))

m.out3
summary(m.out3, un = FALSE)

# 2:1 variable ratio NN matching on the PS
m.out4 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "nearest", ratio = 2,
min.controls = 1, max.controls = 12)

m.out4
summary(m.out4, un = FALSE)

# Some units received 1 match and some received 12
table(table(m.out4$subclass[m.out4$treat == 0]))

method_optimal Optimal Pair Matching

Description

In matchit(), setting method = "optimal" performs optimal pair matching. The matching is opti-
mal in the sense that that sum of the absolute pairwise distances in the matched sample is as small
as possible. The method functionally relies on optmatch::fullmatch().

Advantages of optimal pair matching include that the matching order is not required to be specified
and it is less likely that extreme within-pair distances will be large, unlike with nearest neighbor
matching. Generally, however, as a subset selection method, optimal pair matching tends to perform
similarly to nearest neighbor matching in that similar subsets of units will be selected to be matched.



method_optimal 45

This page details the allowable arguments with method = "optmatch". See matchit() for an ex-
planation of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for optimal pair matching:

matchit(formula,
data = NULL,
method = "optimal",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
exact = NULL,
mahvars = NULL,
antiexact = NULL,
discard = "none",
reestimate = FALSE,
s.weights = NULL,
ratio = 1,
min.controls = NULL,
max.controls = NULL,
verbose = FALSE,
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used
in creating the distance measure used in the matching. This formula will be
supplied to the functions that estimate the distance measure.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "optimal".

distance the distance measure to be used. See distance for allowable options. Can be
supplied as a distance matrix.

link when distance is specified as a method of estimating propensity scores, an
additional argument controlling the link function used in estimating the distance
measure. See distance for allowable options with each option.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance.

estimand a string containing the desired estimand. Allowable options include "ATT" and
"ATC". See Details.

exact for which variables exact matching should take place.

mahvars for which variables Mahalanobis distance matching should take place when
distance corresponds to a propensity score (e.g., for caliper matching or to
discard units for common support). If specified, the distance measure will not
be used in matching.

antiexact for which variables ant-exact matching should take place. Anti-exact matching
is processed using optmatch::antiExactMatch().

discard a string containing a method for discarding units outside a region of common
support. Only allowed when distance is not "mahalanobis" and not a matrix.



46 method_optimal

reestimate if discard is not "none", whether to re-estimate the propensity score in the
remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propensity
score models and balance statistics.

ratio how many control units should be matched to each treated unit for k:1 matching.
For variable ratio matching, see section "Variable Ratio Matching" in Details
below.

min.controls, max.controls

for variable ratio matching, the minimum and maximum number of controls
units to be matched to each treated unit. See section "Variable Ratio Matching"
in Details below.

verbose logical; whether information about the matching process should be printed to
the console. What is printed depends on the matching method. Default is FALSE
for no printing other than warnings.

... additional arguments passed to optmatch::fullmatch(). Allowed arguments
include tol and solver. See the optmatch::fullmatch() documentation for
details. In general, tol should be set to a low number (e.g., 1e-7) to get a more
precise solution.
The arguments replace, caliper, and m.order are ignored with a warning.

Details

Mahalanobis Distance Matching:
Mahalanobis distance matching can be done one of two ways:

1. If no propensity score needs to be estimated, distance should be set to "mahalanobis", and
Mahalanobis distance matching will occur using all the variables in formula. Arguments to
discard and mahvars will be ignored. For example, to perform simple Mahalanobis distance
matching, the following could be run:
matchit(treat ~ X1 + X2, method = "nearest",

distance = "mahalanobis")

With this code, the Mahalanobis distance is computed using X1 and X2, and matching occurs
on this distance. The distance component of the matchit() output will be empty.

2. If a propensity score needs to be estimated for common support with discard, distance
should be whatever method is used to estimate the propensity score or a vector of distance
measures, i.e., it should not be "mahalanobis". Use mahvars to specify the variables used
to create the Mahalanobis distance. For example, to perform Mahalanobis after discarding
units outside the common support of the propensity score in both groups, the following could
be run:
matchit(treat ~ X1 + X2 + X3, method = "nearest",

distance = "glm", discard = "both",
mahvars = ~ X1 + X2)

With this code, X1, X2, and X3 are used to estimate the propensity score (using the "glm"
method, which by default is logistic regression), which is used to identify the common sup-
port. The actual matching occurs on the Mahalanobis distance computed only using X1 and
X2, which are supplied to mahvars. The estimated propensity scores will be included in the
distance component of the matchit() output.

Estimand:
The estimand argument controls whether control units are selected to be matched with treated
units (estimand = "ATT") or treated units are selected to be matched with control units (estimand



method_optimal 47

= "ATC"). The "focal" group (e.g., the treated units for the ATT) is typically made to be the
smaller treatment group, and a warning will be thrown if it is not set that way unless replace =
TRUE. Setting estimand = "ATC" is equivalent to swapping all treated and control labels for the
treatment variable. When estimand = "ATC", the match.matrix component of the output will
have the names of the control units as the rownames and be filled with the names of the matched
treated units (opposite to when estimand = "ATT"). Note that the argument supplied to estimand
doesn’t necessarily correspond to the estimand actually targeted; it is merely a switch to trigger
which treatment group is considered "focal".

Variable Ratio Matching:
matchit() can perform variable ratio matching, which involves matching a different number of
control units to each treated unit. When ratio > 1, rather than requiring all treated units to receive
ratio matches, the arguments to max.controls and min.controls can be specified to control
the maximum and minimum number of matches each treated unit can have. ratio controls how
many total control units will be matched: n1 * ratio control units will be matched, where n1
is the number of treated units, yielding the same total number of matched controls as fixed ratio
matching does.
Variable ratio matching can be used with any distance specification. ratio does not have to be
an integer but must be greater than 1 and less than n0/n1, where n0 and n1 are the number of
control and treated units, respectively. Setting ratio = n0/n1 performs a restricted form of full
matching where all control units are matched. If min.controls is not specified, it is set to 1 by
default. min.controls must be less than ratio, and max.controls must be greater than ratio.
See the Examples section of method_nearest() for an example of their use, which is the same
as it is with optimal matching.

Outputs

All outputs described in matchit() are returned with method = "optimal". When include.obj =
TRUE in the call to matchit(), the output of the call to optmatch::fullmatch() will be included
in the output. When exact is specified, this will be a list of such objects, one for each stratum of
the exact variables.

Note

Optimal pair matching is a restricted form of optimal full matching where the number of treated
units in each subclass is equal to 1, whereas in unrestricted full matching, multiple treated units can
be assigned to the same subclass. optmatch::pairmatch() is simply a wrapper for optmatch::fullmatch(),
which performs optimal full matching and is the workhorse for method_full. In the same way,
matchit() uses optmatch::fullmatch() under the hood, imposing the restrictions that make op-
timal full matching function like optimal pair matching (which is simply to set min.controls >=
1 and to pass ratio to the mean.controls argument). This distinction is not important for regular
use but may be of interest to those examining the source code.

The option "optmatch_max_problem_size" is automatically set to Inf during the matching pro-
cess, different from its default in optmatch. This enables matching problems of any size to be run,
but may also let huge, infeasible problems get through and potentially take a long time or crash R.
See optmatch::setMaxProblemSize() for more details.

References

In a manuscript, be sure to cite the following paper if using matchit() with method = "optimal":

Hansen, B. B., & Klopfer, S. O. (2006). Optimal Full Matching and Related Designs via Net-
work Flows. Journal of Computational and Graphical Statistics, 15(3), 609–627. doi:10.1198/
106186006X137047

https://doi.org/10.1198/106186006X137047
https://doi.org/10.1198/106186006X137047


48 method_quick

For example, a sentence might read:

Optimal pair matching was performed using the MatchIt package (Ho, Imai, King, & Stuart, 2011)
in R, which calls functions from the optmatch package (Hansen & Klopfer, 2006).

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

optmatch::fullmatch(), which is the workhorse.

method_full for optimal full matching, of which optimal pair matching is a special case, and which
relies on similar machinery.

Examples

data("lalonde")

# 1:1 optimal PS matching with exact matching on race
m.out1 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "optimal", exact = ~race)

m.out1
summary(m.out1)

#2:1 optimal Mahalanobis distance matching
m.out2 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "optimal", distance = "mahalanobis",
ratio = 2)

m.out2
summary(m.out2, un = FALSE)

method_quick Fast Generalized Full Matching

Description

In matchit(), setting method = "quick" performs generalized full matching, which is a form of
subclassification wherein all units, both treatment and control (i.e., the "full" sample), are assigned
to a subclass and receive at least one match. It uses an algorithm that is extremely fast compared to
optimal full matching, which is why it is labelled as "quick", at the expense of true optimality. The
method is described in Sävje, Higgins, & Sekhon (2021). The method relies on and is a wrapper
for quickmatch::quickmatch().

Advantages of generalized full matching include that the matching order is not required to be spec-
ified, units do not need to be discarded, and it is less likely that extreme within-subclass distances
will be large, unlike with standard subclassification. The primary output of generalized full match-
ing is a set of matching weights that can be applied to the matched sample; in this way, generalized
full matching can be seen as a robust alternative to propensity score weighting, robust in the sense
that the propensity score model does not need to be correct to estimate the treatment effect without
bias.

This page details the allowable arguments with method = "quick". See matchit() for an explana-
tion of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for generalized full matching:



method_quick 49

matchit(formula,
data = NULL,
method = "quick",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
exact = NULL,
mahvars = NULL,
discard = "none",
reestimate = FALSE,
s.weights = NULL,
caliper = NULL,
std.caliper = TRUE,
verbose = FALSE,
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used
in creating the distance measure used in the matching. This formula will be
supplied to the functions that estimate the distance measure.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "quick".

distance the distance measure to be used. See distance for allowable options. Cannot
be supplied as a matrix.

link when distance is specified as a method of estimating propensity scores, an
additional argument controlling the link function used in estimating the distance
measure. See distance for allowable options with each option.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance.

estimand a string containing the desired estimand. Allowable options include "ATT",
"ATC", and "ATE". The estimand controls how the weights are computed; see
the Computing Weights section at matchit() for details.

exact for which variables exact matching should take place.

mahvars for which variables Mahalanobis distance matching should take place when
distance corresponds to a propensity score (e.g., to discard units for common
support). If specified, the distance measure will not be used in matching.

discard a string containing a method for discarding units outside a region of common
support. Only allowed when distance corresponds to a propensity score.

reestimate if discard is not "none", whether to re-estimate the propensity score in the
remaining sample prior to matching.

s.weights the variable containing sampling weights to be incorporated into propensity
score models and balance statistics.

caliper the width of the caliper used for caliper matching. A caliper can only be placed
on the propensity score.



50 method_quick

std.caliper logical; when a caliper is specified, whether it is in standard deviation units
(TRUE) or raw units (FALSE).

verbose logical; whether information about the matching process should be printed to
the console.

... additional arguments passed to quickmatch::quickmatch(). Allowed argu-
ments include treatment_constraints, size_constraint, target, and other
arguments passed to scclust::sc_clustering() (see quickmatch::quickmatch()
for details). In particular, changing seed_method from its default can improve
performance. No arguments will be passed to distances::distances().
The arguments replace, ratio, min.controls, max.controls, m.order, and
antiexact are ignored with a warning.

Details

Generalized full matching is similar to optimal full matching, but has some additional flexibility that
can be controlled by some of the extra arguments available. By default, method = "quick" performs
a standard full match in which all units are matched (unless restricted by the caliper) and assigned to
a subclass. Each subclass could contain multiple units from each treatment group. The subclasses
are chosen to minimize the largest within-subclass distance between units (including between units
of the same treatment group). Notably, generalized full matching requires less memory and can
run much faster than optimal full matching and optimal pair matching and, in some cases, even
than nearest neighbor matching, and it can be used with huge datasets (e.g., in the millions) while
running in under a minute.

Outputs

All outputs described in matchit() are returned with method = "quick" except for match.matrix.
This is because matching strata are not indexed by treated units as they are in some other forms of
matching. When include.obj = TRUE in the call to matchit(), the output of the call to quickmatch::quickmatch()
will be included in the output. When exact is specified, this will be a list of such objects, one for
each stratum of the exact variables.

References

In a manuscript, be sure to cite the quickmatch package if using matchit() with method = "quick":

Sävje, F., Sekhon, J., & Higgins, M. (2018). quickmatch: Quick generalized full matching. https:
//CRAN.R-project.org/package=quickmatch

For example, a sentence might read:

Generalized full matching was performed using the MatchIt package (Ho, Imai, King, & Stuart,
2011) in R, which calls functions from the quickmatch package (Savje, Sekhon, & Higgins, 2018).

You should also cite the following paper, which develops and describes the method:

Sävje, F., Higgins, M. J., & Sekhon, J. S. (2021). Generalized Full Matching. Political Analysis,
29(4), 423–447. doi:10.1017/pan.2020.32

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

quickmatch::quickmatch(), which is the workhorse.

method_full for optimal full matching, which is nearly the same but offers more customizability
and more optimal solutions at the cost of speed.

https://CRAN.R-project.org/package=quickmatch
https://CRAN.R-project.org/package=quickmatch
https://doi.org/10.1017/pan.2020.32


method_subclass 51

Examples

data("lalonde")

# Generalize full PS matching
m.out1 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "quick")

m.out1
summary(m.out1)

method_subclass Subclassification

Description

In matchit(), setting method = "subclass" performs subclassification on the distance measure
(i.e., propensity score). Treatment and control units are placed into subclasses based on quantiles
of the propensity score in the treated group, in the control group, or overall, depending on the
desired estimand. Weights are computed based on the proportion of treated units in each subclass.
Subclassification implemented here does not rely on any other package.

This page details the allowable arguments with method = "subclass". See matchit() for an ex-
planation of what each argument means in a general context and how it can be specified.

Below is how matchit() is used for subclassification:

matchit(formula,
data = NULL,
method = "subclass",
distance = "glm",
link = "logit",
distance.options = list(),
estimand = "ATT",
discard = "none",
reestimate = FALSE,
s.weights = NULL,
verbose = FALSE,
...)

Arguments

formula a two-sided formula object containing the treatment and covariates to be used in
creating the distance measure used in the subclassification.

data a data frame containing the variables named in formula. If not found in data,
the variables will be sought in the environment.

method set here to "subclass".

distance the distance measure to be used. See distance for allowable options. Must be
a vector of distance scores or the name of a method of estimating propensity
scores.



52 method_subclass

link when distance is specified as a string, an additional argument controlling the
link function used in estimating the distance measure. See distance for allow-
able options with each option.

distance.options

a named list containing additional arguments supplied to the function that esti-
mates the distance measure as determined by the argument to distance.

estimand the target estimand. If "ATT", the default, subclasses are formed based on
quantiles of the distance measure in the treated group; if "ATC", subclasses are
formed based on quantiles of the distance measure in the control group; if "ATE",
subclasses are formed based on quantiles of the distance measure in the full sam-
ple. The estimand also controls how the subclassification weights are computed;
see the Computing Weights section at matchit() for details.

discard a string containing a method for discarding units outside a region of common
support.

reestimate if discard is not "none", whether to re-estimate the propensity score in the
remaining sample prior to subclassification.

s.weights the variable containing sampling weights to be incorporated into propensity
score models and balance statistics.

verbose logical; whether information about the matching process should be printed to
the console.

... additional arguments that control the subclassification:

subclass either the number of subclasses desired or a vector of quantiles used
to divide the distance measure into subclasses. Default is 6.

min.n the minimum number of units of each treatment group that are to be
assigned each subclass. If the distance measure is divided in such a way that
fewer than min.n units of a treatment group are assigned a given subclass,
units from other subclasses will be reassigned to fill the deficient subclass.
Default is 1.

The arguments exact, mahvars, replace, m.order, caliper (and related argu-
ments), and ratio are ignored with a warning.

Details

After subclassification, effect estimates can be computed separately in the subclasses and combined,
or a single marginal effect can be estimated by using the weights in the full sample. When using
the weights, the method is sometimes referred to as marginal mean weighting through stratifica-
tion (MMWS; Hong, 2010) or fine stratification weighting (Desai et al., 2017). The weights can
be interpreted just like inverse probability weights. See vignette("estimating-effects") for
details.

Changing min.n can change the quality of the weights. Generally, a low min.w will yield better
balance because subclasses only contain units with relatively similar distance values, but may yield
higher variance because extreme weights can occur due to there being few members of a treatment
group in some subclasses. When min.n = 0, some subclasses may fail to contain units from both
treatment groups, in which case all units in such subclasses will be dropped.

Note that subclassification weights can also be estimated using WeightIt, which provides some
additional methods for estimating propensity scores. Where propensity score-estimation methods
overlap, both packages will yield the same weights.



method_subclass 53

Outputs

All outputs described in matchit() are returned with method = "subclass" except that match.matrix
is excluded and one additional component, q.cut, is included, containing a vector of the distance
measure cutpoints used to define the subclasses. Note that when min.n > 0, the subclass assign-
ments may not strictly obey the quantiles listed in q.cut. include.obj is ignored.

References

In a manuscript, you don’t need to cite another package when using method = "subclass" because
the subclassification is performed completely within MatchIt. For example, a sentence might read:

Propensity score subclassification was performed using the MatchIt package (Ho, Imai, King, &
Stuart, 2011) in R.

It may be a good idea to cite Hong (2010) or Desai et al. (2017) if the treatment effect is estimated
using the subclassification weights.

Desai, R. J., Rothman, K. J., Bateman, B. . T., Hernandez-Diaz, S., & Huybrechts, K. F. (2017). A
Propensity-score-based Fine Stratification Approach for Confounding Adjustment When Exposure
Is Infrequent: Epidemiology, 28(2), 249–257. doi:10.1097/EDE.0000000000000595

Hong, G. (2010). Marginal mean weighting through stratification: Adjustment for selection bias
in multilevel data. Journal of Educational and Behavioral Statistics, 35(5), 499–531. doi:10.3102/
1076998609359785

See Also

matchit() for a detailed explanation of the inputs and outputs of a call to matchit().

method_full for optimal full matching and method_quick for generalized full matching, which
are similar to subclassification except that the number of subclasses and subclass membership are
chosen to optimize the within-subclass distance.

Examples

data("lalonde")

# PS subclassification for the ATT with 7 subclasses
s.out1 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "subclass", subclass = 7)

s.out1
summary(s.out1, subclass = TRUE)

# PS subclassification for the ATE with 10 subclasses
# and at least 2 units in each group per subclass
s.out2 <- matchit(treat ~ age + educ + race + nodegree +

married + re74 + re75, data = lalonde,
method = "subclass", subclass = 10,
estimand = "ATE", min.n = 2)

s.out2
summary(s.out2)

https://doi.org/10.1097/EDE.0000000000000595
https://doi.org/10.3102/1076998609359785
https://doi.org/10.3102/1076998609359785


54 plot.matchit

plot.matchit Generate Balance Plots after Matching and Subclassification

Description

Generates plots displaying distributional balance and overlap on covariates and propensity scores
before and after matching and subclassification. For displaying balance solely on covariate stan-
dardized mean differences, see plot.summary.matchit(). The plots here can be used to assess
to what degree covariate and propensity score distributions are balanced and how weighting and
discarding affect the distribution of propensity scores.

Usage

## S3 method for class 'matchit'
plot(x, type = "qq", interactive = TRUE, which.xs = NULL, data = NULL, ...)

## S3 method for class 'matchit.subclass'
plot(x, type = "qq", interactive = TRUE, which.xs = NULL, subclass, ...)

Arguments

x a matchit object; the output of a call to matchit().

type the type of plot to display. Options include "qq", "ecdf", "density", "jitter",
and "histogram". See Details. Default is "qq". Abbreviations allowed.

interactive logical; whether the graphs should be displayed in an interactive way. Only
applies for type = "qq", "ecdf", "density", and "jitter". See Details.

which.xs with type = "qq", "ecdf", or "density", for which covariate(s) plots should
be displayed. Factor variables should be named by the original variable name
rather than the names of individual dummy variables created after expansion
with model.matrix. Can be supplied as a character vector or a one-sided for-
mula.

data an optional data frame containing variables named in which.xs but not present
in the matchit object.

... arguments passed to plot() to control the appearance of the plot. Not all op-
tions are accepted.

subclass with subclassification and type = "qq", "ecdf", or "density", whether to dis-
play balance for individual subclasses, and, if so, for which ones. Can be TRUE
(display plots for all subclasses), FALSE (display plots only in aggregate), or the
indices (e.g., 1:6) of the specific subclasses for which to display balance. When
unspecified, if interactive = TRUE, you will be asked for which subclasses
plots are desired, and otherwise, plots will be displayed only in aggregate.

Details

plot.matchit() makes one of five different plots depending on the argument supplied to type.
The first three, "qq", "ecdf", and "density", assess balance on the covariates. When interactive
= TRUE, plots for three variables will be displayed at a time, and the prompt in the console allows
you to move on to the next set of variables. When interactive = FALSE, multiple pages are plot-
ted at the same time, but only the last few variables will be visible in the displayed plot. To see



plot.matchit 55

only a few specific variables at a time, use the which.xs argument to display plots for just those
variables. If fewer than three variables are available (after expanding factors into their dummies),
interactive is ignored.

With type = "qq", empirical quantile-quantile (eQQ) plots are created for each covariate before and
after matching. The plots involve interpolating points in the smaller group based on the weighted
quantiles of the other group. When points are approximately on the 45-degree line, the distributions
in the treatment and control groups are approximately equal. Major deviations indicate departures
from distributional balance. With variable with fewer than 5 unique values, points are jittered to
more easily visualize counts.

With type = "ecdf", empirical cumulative density function (eCDF) plots are created for each co-
variate before and after matching. Two eCDF lines are produced in each plot: a gray one for control
units and a black one for treated units. Each point on the lines corresponds to the proportion of units
(or proportionate share of weights) less than or equal to the corresponding covariate value (on the
x-axis). Deviations between the lines on the same plot indicates distributional imbalance between
the treatment groups for the covariate. The eCDF and eQQ statistics in summary.matchit() cor-
respond to these plots: the eCDF max (also known as the Kolmogorov-Smirnov statistic) and mean
are the largest and average vertical distance between the lines, and the eQQ max and mean are the
largest and average horizontal distance between the lines.

With type = "density", density plots are created for each covariate before and after matching.
Two densities are produced in each plot: a gray one for control units and a black one for treated
units. The x-axis corresponds to the value of the covariate and the y-axis corresponds to the density
or probability of that covariate value in the corresponding group. For binary covariates, bar plots
are produced, having the same interpretation. Deviations between the black and gray lines represent
imbalances in the covariate distribution; when the lines coincide (i.e., when only the black line is
visible), the distributions are identical.

The last two plots, "jitter" and "histogram", visualize the distance (i.e., propensity score) dis-
tributions. These plots are more for heuristic purposes since the purpose of matching is to achieve
balance on the covariates themselves, not the propensity score.

With type = "jitter", a jitter plot is displayed for distance values before and after matching. This
method requires a distance variable (e.g., a propensity score) to have been estimated or supplied in
the call to matchit(). The plot displays individuals values for matched and unmatched treatment
and control units arranged horizontally by their propensity scores. Points are jitter so counts are
easier to see. The size of the points increases when they receive higher weights. When interactive
= TRUE, you can click on points in the graph to identify their rownames and indices to further
probe extreme values, for example. With subclassification, vertical lines representing the subclass
boundaries are overlay on the plots.

With type = "histogram", a histogram of distance values is displayed for the treatment and control
groups before and after matching. This method requires a distance variable (e.g., a propensity score)
to have been estimated or supplied in the call to matchit(). With subclassification, vertical lines
representing the subclass boundaries are overlay on the plots.

With all methods, sampling weights are incorporated into the weights if present.

Note

Sometimes, bugs in the plotting functions can cause strange layout or size issues. Running frame()
or dev.off() can be used to reset the plotting pane (note the latter will delete any plots in the plot
history).

See Also

summary.matchit() for numerical summaries of balance, including those that rely on the eQQ and



56 plot.summary.matchit

eCDF plots.

plot.summary.matchit() for plotting standardized mean differences in a Love plot.

cobalt::bal.plot() for displaying distributional balance in several other ways that are more eas-
ily customizable and produce ggplot2 objects. cobalt functions natively support matchit objects.

Examples

data("lalonde")

m.out <- matchit(treat ~ age + educ + married +
race + re74, data = lalonde,

method = "nearest")
plot(m.out, type = "qq", interactive = FALSE,

which.xs = ~age + educ + re74)
plot(m.out, type = "histogram")

s.out <- matchit(treat ~ age + educ + married +
race + nodegree + re74 + re75,

data = lalonde, method = "subclass")
plot(s.out, type = "density", interactive = FALSE,

which.xs = ~age + educ + re74,
subclass = 3)

plot(s.out, type = "jitter", interactive = FALSE)

plot.summary.matchit Generate a Love Plot of Standardized Mean Differences

Description

Generates a Love plot, which is a dot plot with variable names on the y-axis and standardized
mean differences on the x-axis. Each point represents the standardized mean difference of the
corresponding covariate in the matched or unmatched sample. Love plots are a simple way to
display covariate balance before and after matching. The plots are generated using dotchart()
and points().

Usage

## S3 method for class 'summary.matchit'
plot(
x,
abs = TRUE,
var.order = "data",
threshold = c(0.1, 0.05),
position = "bottomright",
...

)



plot.summary.matchit 57

Arguments

x a summary.matchit object; the output of a call to summary.matchit(). The
standardize argument must be set to TRUE (which is the default) in the call to
summary.

abs logical; whether the standardized mean differences should be displayed in ab-
solute value (TRUE, default) or not FALSE.

var.order how the variables should be ordered. Allowable options include "data", order-
ing the variables as they appear in the summary output; "unmatched", ordered
the variables based on their standardized mean differences before matching;
"matched", ordered the variables based on their standardized mean differences
after matching; and "alphabetical", ordering the variables alphabetically. De-
fault is "data". Abbreviations allowed.

threshold numeric values at which to place vertical lines indicating a balance threshold.
These can make it easier to see for which variables balance has been achieved
given a threshold. Multiple values can be supplied to add multiple lines. When
abs = FALSE, the lines will be displayed on both sides of zero. The lines are
drawn with abline with the linetype (lty) argument corresponding to the order
of the entered variables (see options at par()). The default is c(.1, .05) for a
solid line (lty = 1) at .1 and a dashed line (lty = 2) at .05, indicating acceptable
and good balance, respectively. Enter a value as NA to skip that value of lty
(e.g., c(NA, .05) to have only a dashed vertical line at .05).

position the position of the legend. Should be one of the allowed keyword options
supplied to x in legend() (e.g., "right", "bottomright", etc.). Default is
"bottomright". Set to NULL for no legend to be included. Note that the legend
will cover up points if you are not careful; setting var.order appropriately can
help in avoiding this.

... ignored.

Details

For matching methods other than subclassification, plot.summary.matchit uses x$sum.all[,"Std.
Mean Diff."] and x$sum.matched[,"Std. Mean Diff."] as the x-axis values. For subclassifica-
tion, in addition to points for the unadjusted and aggregate subclass balance, numerals representing
balance in individual subclasses are plotted if subclass = TRUE in the call to summary. Aggregate
subclass standardized mean differences are taken from x$sum.across[,"Std. Mean Diff."] and
the subclass-specific mean differences are taken from x$sum.subclass.

Value

A plot is displayed, and x is invisibly returned.

Author(s)

Noah Greifer

See Also

summary.matchit(), dotchart()

cobalt::love.plot() is a more flexible and sophisticated function to make Love plots and is also
natively compatible with matchit objects.



58 rbind.matchdata

Examples

data("lalonde")
m.out <- matchit(treat ~ age + educ + married +

race + re74, data = lalonde,
method = "nearest")

plot(summary(m.out, interactions = TRUE),
var.order = "unmatched")

s.out <- matchit(treat ~ age + educ + married +
race + nodegree + re74 + re75,

data = lalonde, method = "subclass")
plot(summary(s.out, subclass = TRUE),

var.order = "unmatched", abs = FALSE)

rbind.matchdata Append matched datasets together

Description

These functions are rbind() methods for objects resulting from calls to match.data() and get_matches().
They function nearly identically to rbind.data.frame(); see Details for how they differ.

Usage

## S3 method for class 'matchdata'
rbind(..., deparse.level = 1)

## S3 method for class 'getmatches'
rbind(..., deparse.level = 1)

Arguments

... Two or more matchdata or getmatches objects the output of calls to match.data()
and get_matches(), respectively. Supplied objects must either be all matchdata
objects or all getmatches objects.

deparse.level Passed to rbind().

Details

rbind() appends two or more datasets row-wise. This can be useful when matching was performed
separately on subsets of the original data and they are to be combined into a single dataset for effect
estimation. Using the regular data.frame method for rbind() would pose a problem, however;
the subclass variable would have repeated names across different datasets, even though units only
belong to the subclasses in their respective datasets. rbind.matchdata() renames the subclasses
so that the correct subclass membership is maintained.

The supplied matched datasets must be generated from the same original dataset, that is, having the
same variables in it. The added components (e.g., weights, subclass) can be named differently in
different datasets but will be changed to have the same name in the output.

rbind.getmatches() and rbind.matchdata() are identical.



summary.matchit 59

Value

An object of the same class as those supplied to it (i.e., a matchdata object if matchdata objects are
supplied and a getmatches object if getmatches objects are supplied). rbind() is called on the
objects after adjusting the variables so that the appropriate method will be dispatched corresponding
to the class of the original data object.

Author(s)

Noah Greifer

See Also

match.data(), rbind()

See vignettes("estimating-effects") for details on using rbind() for effect estimation after
subsetting the data.

Examples

data("lalonde")

# Matching based on race subsets
m.out_b <- matchit(treat ~ age + educ + married +

nodegree + re74 + re75,
data = subset(lalonde, race == "black"))

md_b <- match.data(m.out_b)

m.out_h <- matchit(treat ~ age + educ + married +
nodegree + re74 + re75,

data = subset(lalonde, race == "hispan"))
md_h <- match.data(m.out_h)

m.out_w <- matchit(treat ~ age + educ + married +
nodegree + re74 + re75,

data = subset(lalonde, race == "white"))
md_w <- match.data(m.out_w)

#Bind the datasets together
md_all <- rbind(md_b, md_h, md_w)

#Subclass conflicts are avoided
levels(md_all$subclass)

summary.matchit View a balance summary of a matchit object

Description

Computes and prints balance statistics for matchit and matchit.subclass objects. Balance
should be assessed to ensure the matching or subclassification was effective at eliminating treat-
ment group imbalance and should be reported in the write-up of the results of the analysis.



60 summary.matchit

Usage

## S3 method for class 'matchit'
summary(
object,
interactions = FALSE,
addlvariables = NULL,
standardize = TRUE,
data = NULL,
pair.dist = TRUE,
un = TRUE,
improvement = FALSE,
...

)

## S3 method for class 'matchit.subclass'
summary(
object,
interactions = FALSE,
addlvariables = NULL,
standardize = TRUE,
data = NULL,
pair.dist = FALSE,
subclass = FALSE,
un = TRUE,
improvement = FALSE,
...

)

## S3 method for class 'summary.matchit'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object a matchit object; the output of a call to matchit().

interactions logical; whether to compute balance statistics for two-way interactions and
squares of covariates. Default is FALSE.

addlvariables additional variable for which balance statistics are to be computed along with
the covariates in the matchit object. Can be entered in one of three ways: as
a data frame of covariates with as many rows as there were units in the orig-
inal matchit() call, as a string containing the names of variables in data,
or as a right-sided formula with the additional variables (and possibly their
transformations) found in data, the environment, or the matchit object. Bal-
ance on squares and interactions of the additional variables will be included if
interactions = TRUE.

standardize logical; whether to compute standardized (TRUE) or unstandardized (FALSE)
statistics. The standardized statistics are the standardized mean difference and
the mean and maximum of the difference in the (weighted) empirical cumulative
distribution functions (ECDFs). The unstandardized statistics are the raw mean
difference and the mean and maximum of the quantile-quantile (QQ) difference.
Variance ratios are produced either way. See Details below. Default is TRUE.



summary.matchit 61

data a optional data frame containing variables named in addlvariables if specified
as a string or formula.

pair.dist logical; whether to compute average absolute pair distances. For matching
methods that don’t include a match.matrix component in the output (i.e., ex-
act matching, coarsened exact matching, full matching, and subclassification),
computing pair differences can take a long time, especially for large datasets
and with many covariates. For other methods (i.e., nearest neighbor, optimal,
and genetic matching), computation is fairly quick. Default is FALSE for sub-
classification and TRUE otherwise.

un logical; whether to compute balance statistics for the unmatched sample. De-
fault TRUE; set to FALSE for more concise output.

improvement logical; whether to compute the percent reduction in imbalance. Default FALSE.
Ignored if un = FALSE.

... ignored.

subclass after subclassification, whether to display balance for individual subclasses, and,
if so, for which ones. Can be TRUE (display balance for all subclasses), FALSE
(display balance only in aggregate), or the indices (e.g., 1:6) of the specific
subclasses for which to display balance. When anything other than FALSE, ag-
gregate balance statistics will not be displayed. Default is FALSE.

x a summay.matchit or summary.matchit.subclass object; the output of a call
to summary().

digits the number of digits to round balance statistics to.

Details

summary() computes a balance summary of a matchit object. This include balance before and
after matching or subclassification, as well as the percent improvement in balance. The variables
for which balance statistics are computed are those included in the formula, exact, and mahvars
arguments to matchit(), as well as the distance measure if distance is was supplied as a numeric
vector or method of estimating propensity scores. The X component of the matchit object is used
to supply the covariates.

The standardized mean differences are computed both before and after matching or subclassifica-
tion as the difference in treatment group means divided by a standardization factor computed in
the unmatched (original) sample. The standardization factor depends on the argument supplied to
estimand in matchit(): for "ATT", it is the standard deviation in the treated group; for "ATC",
it is the standard deviation in the control group; for "ATE", it is the square root of the average of
the variances within each treatment group. The post-matching mean difference is computed with
weighted means in the treatment groups using the matching or subclassification weights.

The variance ratio is computed as the ratio of the treatment group variances. Variance ratios are
not computed for binary variables because their variance is a function solely of their mean. After
matching, weighted variances are computed using the formula used in cov.wt(). The percent
reduction in bias is computed using the log of the variance ratios.

The eCDF difference statistics are computed by creating a (weighted) eCDF for each group and
taking the difference between them for each covariate value. The eCDF is a function that outputs
the (weighted) proportion of units with covariate values at or lower than the input value. The
maximum eCDF difference is the same thing as the Kolmogorov-Smirnov statistic. The values are
bounded at zero and one, with values closer to zero indicating good overlap between the covariate
distributions in the treated and control groups. For binary variables, all eCDF differences are equal
to the (weighted) difference in proportion and are computed that way.



62 summary.matchit

The QQ difference statistics are computed by creating two samples of the same size by interpolating
the values of the larger one. The values are arranged in order for each sample. The QQ difference
for each quantile is the difference between the observed covariate values at that quantile between
the two groups. The difference is on the scale of the original covariate. Values close to zero indicate
good overlap between the covariate distributions in the treated and control groups. A weighted
interpolation is used for post-matching QQ differences. For binary variables, all QQ differences are
equal to the (weighted) difference in proportion and are computed that way.

The pair distance is the average of the absolute differences of a variable between pairs. For example,
if a treated unit was paired with four control units, that set of units would contribute four absolute
differences to the average. Within a subclass, each combination of treated and control unit forms
a pair that contributes once to the average. The pair distance is described in Stuart and Green
(2008) and is the value that is minimized when using optimal (full) matching. When standardize
= TRUE, the standardized versions of the variables are used, where the standardization factor is as
described above for the standardized mean differences. Pair distances are not computed in the
unmatched sample (because there are no pairs). Because pair distance can take a while to compute,
especially with large datasets or for many covariates, setting pair.dist = FALSE is one way to
speed up summary().

The effective sample size (ESS) is a measure of the size of a hypothetical unweighted sample
with roughly the same precision as a weighted sample. When non-uniform matching weights are
computed (e.g., as a result of full matching, matching with replacement, or subclassification), the
ESS can be used to quantify the potential precision remaining in the matched sample. The ESS
will always be less than or equal to the matched sample size, reflecting the loss in precision due to
using the weights. With non-uniform weights, it is printed in the sample size table; otherwise, it is
removed because it does not contain additional information above the matched sample size.

After subclassification, the aggregate balance statistics are computed using the subclassification
weights rather than averaging across subclasses.

All balance statistics (except pair differences) are computed incorporating the sampling weights
supplied to matchit(), if any. The unadjusted balance statistics include the sampling weights and
the adjusted balance statistics use the matching weights multiplied by the sampling weights.

When printing, NA values are replaced with periods (.), and the pair distance column in the un-
matched and percent balance improvement components of the output are omitted.

Value

For matchit objects, a summary.matchit object, which is a list with the following components:

call the original call to matchit()

nn a matrix of the sample sizes in the original (unmatched) and matched samples

sum.all if un = TRUE, a matrix of balance statistics for each covariate in the original (un-
matched) sample

sum.matched a matrix of balance statistics for each covariate in the matched sample

reduction if improvement = TRUE, a matrix of the percent reduction in imbalance for each
covariate in the matched sample

For match.subclass objects, a summary.matchit.subclass object, which is a list as above con-
taining the following components:

call the original call to matchit()

sum.all if un = TRUE, a matrix of balance statistics for each covariate in the original sam-
ple



summary.matchit 63

sum.subclass if subclass is not FALSE, a list of matrices of balance statistics for each subclass

sum.across a matrix of balance statistics for each covariate computed using the subclassifi-
cation weights

reduction if improvement = TRUE, a matrix of the percent reduction in imbalance for each
covariate in the matched sample

qn a matrix of sample sizes within each subclass

nn a matrix of the sample sizes in the original (unmatched) and matched samples

See Also

summary() for the generic method; plot.summary.matchit() for making a Love plot from summary()
output.

cobalt::bal.tab.matchit(), which also displays balance for matchit objects.

Examples

data("lalonde")
m.out <- matchit(treat ~ age + educ + married +

race + re74, data = lalonde,
method = "nearest", exact = ~ married,
replace = TRUE)

summary(m.out, interactions = TRUE)

s.out <- matchit(treat ~ age + educ + married +
race + nodegree + re74 + re75,

data = lalonde, method = "subclass")
summary(s.out, addlvariables = ~log(age) + I(re74==0))
summary(s.out, subclass = TRUE)



Index

∗ datasets
lalonde, 8

add_s.weights, 2

binomial(), 4, 5

CBPS::CBPS(), 6
cobalt::bal.plot(), 56
cobalt::bal.tab.matchit(), 63
cobalt::love.plot(), 57
corresponding function, 6
cov.wt(), 61

dbarts::bart2(), 6
dbarts::fitted.bart(), 6
dev.off(), 55
dist, 7
dist(), 11, 28
distance, 4, 11, 16, 17, 19, 33, 37, 41, 45, 49,

51, 52
distance(), 28
dotchart(), 56, 57

euclidean_dist (mahalanobis_dist), 9

fitted(), 5, 6
formula, 16, 23, 27, 31, 33, 37, 41, 45, 49, 51
frame(), 55

gbm::gbm(), 5
gbm::gbm.perf(), 5
gbm::predict.gbm(), 5
get_matches (match.data), 12
get_matches(), 2, 58
glm(), 4, 17
glmnet::cv.glmnet(), 5
glmnet::predict.cv.glmnet(), 5
grDevices::nclass.FD(), 28
grDevices::nclass.scott(), 28, 29
grDevices::nclass.Sturges(), 28, 29

hist(), 29

lalonde, 8

lapply(), 15
legend(), 57

mahalanobis_dist, 9
mahalanobis_dist(), 7
match.data, 12
match.data(), 2, 3, 20, 58, 59
Matching::GenMatch(), 36, 38, 39
Matching::Match(), 36, 39
matchit, 15
matchit(), 2–4, 9, 11, 13, 15, 22, 25, 27,

29–37, 39–41, 43–45, 47–54, 60–62
method_cardinality, 19, 22
method_cem, 18, 27, 32
method_exact, 19, 30, 31
method_full, 18, 32, 47, 48, 50, 53
method_genetic, 18, 36
method_nearest, 18, 40
method_nearest(), 47
method_optimal, 18, 35, 44
method_optimal(), 43
method_quick, 35, 48, 53
method_subclass, 19, 21, 51
mgcv::formula.gam(), 5
mgcv::gam(), 4, 5
mgcv::gam.models(), 5
mgcv::predict.gam(), 4
mgcv::s(), 5
mgcv::t2(), 5
mgcv::te(), 5
mgcv::ti(), 5
model.matrix(), 5

nnet::nnet(), 5

optmatch::antiExactMatch(), 33, 45
optmatch::caliper(), 34
optmatch::fullmatch(), 32, 34, 35, 44,

46–48
optmatch::match_on(), 7, 11
optmatch::pairmatch(), 47
optmatch::setMaxProblemSize(), 35, 47

par(), 57

64



INDEX 65

plot(), 54
plot.matchit, 54
plot.matchit(), 2, 21
plot.summary.matchit, 56
plot.summary.matchit(), 54, 56, 63
points(), 56
predict.glm(), 4
print.matchit (matchit), 15
print.summary.matchit

(summary.matchit), 59

quickmatch::quickmatch(), 48, 50

randomForest::predict.randomForest(),
5

randomForest::randomForest(), 5
rbind(), 14, 58, 59
rbind.getmatches (rbind.matchdata), 58
rbind.matchdata, 58
rbind.matchdata(), 15
rgenoud::genoud(), 36
robust_mahalanobis_dist

(mahalanobis_dist), 9
rpart::predict.rpart(), 5
rpart::rpart(), 5

scaled_euclidean_dist
(mahalanobis_dist), 9

seed, 5
set.seed(), 18
summary(), 63
summary.matchit, 59
summary.matchit(), 2, 21, 23, 55, 57


	add_s.weights
	distance
	lalonde
	mahalanobis_dist
	match.data
	matchit
	method_cardinality
	method_cem
	method_exact
	method_full
	method_genetic
	method_nearest
	method_optimal
	method_quick
	method_subclass
	plot.matchit
	plot.summary.matchit
	rbind.matchdata
	summary.matchit
	Index

