/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* callback functions used by s_client, s_server, and s_time */ #include #include #include /* for memcpy() and strcmp() */ #include "apps.h" #include #include #include #include #include #ifndef OPENSSL_NO_DH # include #endif #include "s_apps.h" #define COOKIE_SECRET_LENGTH 16 VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 }; #ifndef OPENSSL_NO_SOCK static unsigned char cookie_secret[COOKIE_SECRET_LENGTH]; static int cookie_initialized = 0; #endif static BIO *bio_keylog = NULL; static const char *lookup(int val, const STRINT_PAIR* list, const char* def) { for ( ; list->name; ++list) if (list->retval == val) return list->name; return def; } int verify_callback(int ok, X509_STORE_CTX *ctx) { X509 *err_cert; int err, depth; err_cert = X509_STORE_CTX_get_current_cert(ctx); err = X509_STORE_CTX_get_error(ctx); depth = X509_STORE_CTX_get_error_depth(ctx); if (!verify_args.quiet || !ok) { BIO_printf(bio_err, "depth=%d ", depth); if (err_cert != NULL) { X509_NAME_print_ex(bio_err, X509_get_subject_name(err_cert), 0, get_nameopt()); BIO_puts(bio_err, "\n"); } else { BIO_puts(bio_err, "\n"); } } if (!ok) { BIO_printf(bio_err, "verify error:num=%d:%s\n", err, X509_verify_cert_error_string(err)); if (verify_args.depth < 0 || verify_args.depth >= depth) { if (!verify_args.return_error) ok = 1; verify_args.error = err; } else { ok = 0; verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG; } } switch (err) { case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: if (err_cert != NULL) { BIO_puts(bio_err, "issuer= "); X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert), 0, get_nameopt()); BIO_puts(bio_err, "\n"); } break; case X509_V_ERR_CERT_NOT_YET_VALID: case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: if (err_cert != NULL) { BIO_printf(bio_err, "notBefore="); ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert)); BIO_printf(bio_err, "\n"); } break; case X509_V_ERR_CERT_HAS_EXPIRED: case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: if (err_cert != NULL) { BIO_printf(bio_err, "notAfter="); ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert)); BIO_printf(bio_err, "\n"); } break; case X509_V_ERR_NO_EXPLICIT_POLICY: if (!verify_args.quiet) policies_print(ctx); break; } if (err == X509_V_OK && ok == 2 && !verify_args.quiet) policies_print(ctx); if (ok && !verify_args.quiet) BIO_printf(bio_err, "verify return:%d\n", ok); return ok; } int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file) { if (cert_file != NULL) { if (SSL_CTX_use_certificate_file(ctx, cert_file, SSL_FILETYPE_PEM) <= 0) { BIO_printf(bio_err, "unable to get certificate from '%s'\n", cert_file); ERR_print_errors(bio_err); return 0; } if (key_file == NULL) key_file = cert_file; if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) { BIO_printf(bio_err, "unable to get private key from '%s'\n", key_file); ERR_print_errors(bio_err); return 0; } /* * If we are using DSA, we can copy the parameters from the private * key */ /* * Now we know that a key and cert have been set against the SSL * context */ if (!SSL_CTX_check_private_key(ctx)) { BIO_printf(bio_err, "Private key does not match the certificate public key\n"); return 0; } } return 1; } int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key, STACK_OF(X509) *chain, int build_chain) { int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0; if (cert == NULL) return 1; if (SSL_CTX_use_certificate(ctx, cert) <= 0) { BIO_printf(bio_err, "error setting certificate\n"); ERR_print_errors(bio_err); return 0; } if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) { BIO_printf(bio_err, "error setting private key\n"); ERR_print_errors(bio_err); return 0; } /* * Now we know that a key and cert have been set against the SSL context */ if (!SSL_CTX_check_private_key(ctx)) { BIO_printf(bio_err, "Private key does not match the certificate public key\n"); return 0; } if (chain && !SSL_CTX_set1_chain(ctx, chain)) { BIO_printf(bio_err, "error setting certificate chain\n"); ERR_print_errors(bio_err); return 0; } if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) { BIO_printf(bio_err, "error building certificate chain\n"); ERR_print_errors(bio_err); return 0; } return 1; } static STRINT_PAIR cert_type_list[] = { {"RSA sign", TLS_CT_RSA_SIGN}, {"DSA sign", TLS_CT_DSS_SIGN}, {"RSA fixed DH", TLS_CT_RSA_FIXED_DH}, {"DSS fixed DH", TLS_CT_DSS_FIXED_DH}, {"ECDSA sign", TLS_CT_ECDSA_SIGN}, {"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH}, {"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH}, {"GOST01 Sign", TLS_CT_GOST01_SIGN}, {"GOST12 Sign", TLS_CT_GOST12_SIGN}, {NULL} }; static void ssl_print_client_cert_types(BIO *bio, SSL *s) { const unsigned char *p; int i; int cert_type_num = SSL_get0_certificate_types(s, &p); if (!cert_type_num) return; BIO_puts(bio, "Client Certificate Types: "); for (i = 0; i < cert_type_num; i++) { unsigned char cert_type = p[i]; const char *cname = lookup((int)cert_type, cert_type_list, NULL); if (i) BIO_puts(bio, ", "); if (cname != NULL) BIO_puts(bio, cname); else BIO_printf(bio, "UNKNOWN (%d),", cert_type); } BIO_puts(bio, "\n"); } static const char *get_sigtype(int nid) { switch (nid) { case EVP_PKEY_RSA: return "RSA"; case EVP_PKEY_RSA_PSS: return "RSA-PSS"; case EVP_PKEY_DSA: return "DSA"; case EVP_PKEY_EC: return "ECDSA"; case NID_ED25519: return "Ed25519"; case NID_ED448: return "Ed448"; case NID_id_GostR3410_2001: return "gost2001"; case NID_id_GostR3410_2012_256: return "gost2012_256"; case NID_id_GostR3410_2012_512: return "gost2012_512"; default: return NULL; } } static int do_print_sigalgs(BIO *out, SSL *s, int shared) { int i, nsig, client; client = SSL_is_server(s) ? 0 : 1; if (shared) nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL); else nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL); if (nsig == 0) return 1; if (shared) BIO_puts(out, "Shared "); if (client) BIO_puts(out, "Requested "); BIO_puts(out, "Signature Algorithms: "); for (i = 0; i < nsig; i++) { int hash_nid, sign_nid; unsigned char rhash, rsign; const char *sstr = NULL; if (shared) SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash); else SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash); if (i) BIO_puts(out, ":"); sstr = get_sigtype(sign_nid); if (sstr) BIO_printf(out, "%s", sstr); else BIO_printf(out, "0x%02X", (int)rsign); if (hash_nid != NID_undef) BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid)); else if (sstr == NULL) BIO_printf(out, "+0x%02X", (int)rhash); } BIO_puts(out, "\n"); return 1; } int ssl_print_sigalgs(BIO *out, SSL *s) { int nid; if (!SSL_is_server(s)) ssl_print_client_cert_types(out, s); do_print_sigalgs(out, s, 0); do_print_sigalgs(out, s, 1); if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef) BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid)); if (SSL_get_peer_signature_type_nid(s, &nid)) BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid)); return 1; } #ifndef OPENSSL_NO_EC int ssl_print_point_formats(BIO *out, SSL *s) { int i, nformats; const char *pformats; nformats = SSL_get0_ec_point_formats(s, &pformats); if (nformats <= 0) return 1; BIO_puts(out, "Supported Elliptic Curve Point Formats: "); for (i = 0; i < nformats; i++, pformats++) { if (i) BIO_puts(out, ":"); switch (*pformats) { case TLSEXT_ECPOINTFORMAT_uncompressed: BIO_puts(out, "uncompressed"); break; case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime: BIO_puts(out, "ansiX962_compressed_prime"); break; case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2: BIO_puts(out, "ansiX962_compressed_char2"); break; default: BIO_printf(out, "unknown(%d)", (int)*pformats); break; } } BIO_puts(out, "\n"); return 1; } int ssl_print_groups(BIO *out, SSL *s, int noshared) { int i, ngroups, *groups, nid; const char *gname; ngroups = SSL_get1_groups(s, NULL); if (ngroups <= 0) return 1; groups = app_malloc(ngroups * sizeof(int), "groups to print"); SSL_get1_groups(s, groups); BIO_puts(out, "Supported Elliptic Groups: "); for (i = 0; i < ngroups; i++) { if (i) BIO_puts(out, ":"); nid = groups[i]; /* If unrecognised print out hex version */ if (nid & TLSEXT_nid_unknown) { BIO_printf(out, "0x%04X", nid & 0xFFFF); } else { /* TODO(TLS1.3): Get group name here */ /* Use NIST name for curve if it exists */ gname = EC_curve_nid2nist(nid); if (gname == NULL) gname = OBJ_nid2sn(nid); BIO_printf(out, "%s", gname); } } OPENSSL_free(groups); if (noshared) { BIO_puts(out, "\n"); return 1; } BIO_puts(out, "\nShared Elliptic groups: "); ngroups = SSL_get_shared_group(s, -1); for (i = 0; i < ngroups; i++) { if (i) BIO_puts(out, ":"); nid = SSL_get_shared_group(s, i); /* TODO(TLS1.3): Convert for DH groups */ gname = EC_curve_nid2nist(nid); if (gname == NULL) gname = OBJ_nid2sn(nid); BIO_printf(out, "%s", gname); } if (ngroups == 0) BIO_puts(out, "NONE"); BIO_puts(out, "\n"); return 1; } #endif int ssl_print_tmp_key(BIO *out, SSL *s) { EVP_PKEY *key; if (!SSL_get_peer_tmp_key(s, &key)) return 1; BIO_puts(out, "Server Temp Key: "); switch (EVP_PKEY_id(key)) { case EVP_PKEY_RSA: BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_bits(key)); break; case EVP_PKEY_DH: BIO_printf(out, "DH, %d bits\n", EVP_PKEY_bits(key)); break; #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: { EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key); int nid; const char *cname; nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); EC_KEY_free(ec); cname = EC_curve_nid2nist(nid); if (cname == NULL) cname = OBJ_nid2sn(nid); BIO_printf(out, "ECDH, %s, %d bits\n", cname, EVP_PKEY_bits(key)); } break; #endif default: BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_id(key)), EVP_PKEY_bits(key)); } EVP_PKEY_free(key); return 1; } long bio_dump_callback(BIO *bio, int cmd, const char *argp, int argi, long argl, long ret) { BIO *out; out = (BIO *)BIO_get_callback_arg(bio); if (out == NULL) return ret; if (cmd == (BIO_CB_READ | BIO_CB_RETURN)) { BIO_printf(out, "read from %p [%p] (%lu bytes => %ld (0x%lX))\n", (void *)bio, (void *)argp, (unsigned long)argi, ret, ret); BIO_dump(out, argp, (int)ret); return ret; } else if (cmd == (BIO_CB_WRITE | BIO_CB_RETURN)) { BIO_printf(out, "write to %p [%p] (%lu bytes => %ld (0x%lX))\n", (void *)bio, (void *)argp, (unsigned long)argi, ret, ret); BIO_dump(out, argp, (int)ret); } return ret; } void apps_ssl_info_callback(const SSL *s, int where, int ret) { const char *str; int w; w = where & ~SSL_ST_MASK; if (w & SSL_ST_CONNECT) str = "SSL_connect"; else if (w & SSL_ST_ACCEPT) str = "SSL_accept"; else str = "undefined"; if (where & SSL_CB_LOOP) { BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s)); } else if (where & SSL_CB_ALERT) { str = (where & SSL_CB_READ) ? "read" : "write"; BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n", str, SSL_alert_type_string_long(ret), SSL_alert_desc_string_long(ret)); } else if (where & SSL_CB_EXIT) { if (ret == 0) BIO_printf(bio_err, "%s:failed in %s\n", str, SSL_state_string_long(s)); else if (ret < 0) BIO_printf(bio_err, "%s:error in %s\n", str, SSL_state_string_long(s)); } } static STRINT_PAIR ssl_versions[] = { {"SSL 3.0", SSL3_VERSION}, {"TLS 1.0", TLS1_VERSION}, {"TLS 1.1", TLS1_1_VERSION}, {"TLS 1.2", TLS1_2_VERSION}, {"TLS 1.3", TLS1_3_VERSION}, {"DTLS 1.0", DTLS1_VERSION}, {"DTLS 1.0 (bad)", DTLS1_BAD_VER}, {NULL} }; static STRINT_PAIR alert_types[] = { {" close_notify", 0}, {" end_of_early_data", 1}, {" unexpected_message", 10}, {" bad_record_mac", 20}, {" decryption_failed", 21}, {" record_overflow", 22}, {" decompression_failure", 30}, {" handshake_failure", 40}, {" bad_certificate", 42}, {" unsupported_certificate", 43}, {" certificate_revoked", 44}, {" certificate_expired", 45}, {" certificate_unknown", 46}, {" illegal_parameter", 47}, {" unknown_ca", 48}, {" access_denied", 49}, {" decode_error", 50}, {" decrypt_error", 51}, {" export_restriction", 60}, {" protocol_version", 70}, {" insufficient_security", 71}, {" internal_error", 80}, {" inappropriate_fallback", 86}, {" user_canceled", 90}, {" no_renegotiation", 100}, {" missing_extension", 109}, {" unsupported_extension", 110}, {" certificate_unobtainable", 111}, {" unrecognized_name", 112}, {" bad_certificate_status_response", 113}, {" bad_certificate_hash_value", 114}, {" unknown_psk_identity", 115}, {" certificate_required", 116}, {NULL} }; static STRINT_PAIR handshakes[] = { {", HelloRequest", SSL3_MT_HELLO_REQUEST}, {", ClientHello", SSL3_MT_CLIENT_HELLO}, {", ServerHello", SSL3_MT_SERVER_HELLO}, {", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST}, {", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET}, {", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA}, {", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS}, {", Certificate", SSL3_MT_CERTIFICATE}, {", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE}, {", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST}, {", ServerHelloDone", SSL3_MT_SERVER_DONE}, {", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY}, {", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE}, {", Finished", SSL3_MT_FINISHED}, {", CertificateUrl", SSL3_MT_CERTIFICATE_URL}, {", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS}, {", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA}, {", KeyUpdate", SSL3_MT_KEY_UPDATE}, #ifndef OPENSSL_NO_NEXTPROTONEG {", NextProto", SSL3_MT_NEXT_PROTO}, #endif {", MessageHash", SSL3_MT_MESSAGE_HASH}, {NULL} }; void msg_cb(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { BIO *bio = arg; const char *str_write_p = write_p ? ">>>" : "<<<"; const char *str_version = lookup(version, ssl_versions, "???"); const char *str_content_type = "", *str_details1 = "", *str_details2 = ""; const unsigned char* bp = buf; if (version == SSL3_VERSION || version == TLS1_VERSION || version == TLS1_1_VERSION || version == TLS1_2_VERSION || version == TLS1_3_VERSION || version == DTLS1_VERSION || version == DTLS1_BAD_VER) { switch (content_type) { case 20: str_content_type = ", ChangeCipherSpec"; break; case 21: str_content_type = ", Alert"; str_details1 = ", ???"; if (len == 2) { switch (bp[0]) { case 1: str_details1 = ", warning"; break; case 2: str_details1 = ", fatal"; break; } str_details2 = lookup((int)bp[1], alert_types, " ???"); } break; case 22: str_content_type = ", Handshake"; str_details1 = "???"; if (len > 0) str_details1 = lookup((int)bp[0], handshakes, "???"); break; case 23: str_content_type = ", ApplicationData"; break; #ifndef OPENSSL_NO_HEARTBEATS case 24: str_details1 = ", Heartbeat"; if (len > 0) { switch (bp[0]) { case 1: str_details1 = ", HeartbeatRequest"; break; case 2: str_details1 = ", HeartbeatResponse"; break; } } break; #endif } } BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version, str_content_type, (unsigned long)len, str_details1, str_details2); if (len > 0) { size_t num, i; BIO_printf(bio, " "); num = len; for (i = 0; i < num; i++) { if (i % 16 == 0 && i > 0) BIO_printf(bio, "\n "); BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]); } if (i < len) BIO_printf(bio, " ..."); BIO_printf(bio, "\n"); } (void)BIO_flush(bio); } static STRINT_PAIR tlsext_types[] = { {"server name", TLSEXT_TYPE_server_name}, {"max fragment length", TLSEXT_TYPE_max_fragment_length}, {"client certificate URL", TLSEXT_TYPE_client_certificate_url}, {"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys}, {"truncated HMAC", TLSEXT_TYPE_truncated_hmac}, {"status request", TLSEXT_TYPE_status_request}, {"user mapping", TLSEXT_TYPE_user_mapping}, {"client authz", TLSEXT_TYPE_client_authz}, {"server authz", TLSEXT_TYPE_server_authz}, {"cert type", TLSEXT_TYPE_cert_type}, {"supported_groups", TLSEXT_TYPE_supported_groups}, {"EC point formats", TLSEXT_TYPE_ec_point_formats}, {"SRP", TLSEXT_TYPE_srp}, {"signature algorithms", TLSEXT_TYPE_signature_algorithms}, {"use SRTP", TLSEXT_TYPE_use_srtp}, {"heartbeat", TLSEXT_TYPE_heartbeat}, {"session ticket", TLSEXT_TYPE_session_ticket}, {"renegotiation info", TLSEXT_TYPE_renegotiate}, {"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp}, {"TLS padding", TLSEXT_TYPE_padding}, #ifdef TLSEXT_TYPE_next_proto_neg {"next protocol", TLSEXT_TYPE_next_proto_neg}, #endif #ifdef TLSEXT_TYPE_encrypt_then_mac {"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac}, #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation {"application layer protocol negotiation", TLSEXT_TYPE_application_layer_protocol_negotiation}, #endif #ifdef TLSEXT_TYPE_extended_master_secret {"extended master secret", TLSEXT_TYPE_extended_master_secret}, #endif {"key share", TLSEXT_TYPE_key_share}, {"supported versions", TLSEXT_TYPE_supported_versions}, {"psk", TLSEXT_TYPE_psk}, {"psk kex modes", TLSEXT_TYPE_psk_kex_modes}, {"certificate authorities", TLSEXT_TYPE_certificate_authorities}, {"post handshake auth", TLSEXT_TYPE_post_handshake_auth}, {NULL} }; /* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */ static STRINT_PAIR signature_tls13_scheme_list[] = { {"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */}, {"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */}, /* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */ /* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */ {"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */}, {"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */}, {"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */}, {"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */}, {"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */}, {"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */}, {"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */}, {"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */}, {"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */}, {"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */}, {"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */}, {"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */}, {"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */}, {"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */}, {"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */}, {"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */}, {"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */}, {NULL} }; /* from rfc5246 7.4.1.4.1. */ static STRINT_PAIR signature_tls12_alg_list[] = { {"anonymous", TLSEXT_signature_anonymous /* 0 */}, {"RSA", TLSEXT_signature_rsa /* 1 */}, {"DSA", TLSEXT_signature_dsa /* 2 */}, {"ECDSA", TLSEXT_signature_ecdsa /* 3 */}, {NULL} }; /* from rfc5246 7.4.1.4.1. */ static STRINT_PAIR signature_tls12_hash_list[] = { {"none", TLSEXT_hash_none /* 0 */}, {"MD5", TLSEXT_hash_md5 /* 1 */}, {"SHA1", TLSEXT_hash_sha1 /* 2 */}, {"SHA224", TLSEXT_hash_sha224 /* 3 */}, {"SHA256", TLSEXT_hash_sha256 /* 4 */}, {"SHA384", TLSEXT_hash_sha384 /* 5 */}, {"SHA512", TLSEXT_hash_sha512 /* 6 */}, {NULL} }; void tlsext_cb(SSL *s, int client_server, int type, const unsigned char *data, int len, void *arg) { BIO *bio = arg; const char *extname = lookup(type, tlsext_types, "unknown"); BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n", client_server ? "server" : "client", extname, type, len); BIO_dump(bio, (const char *)data, len); (void)BIO_flush(bio); } #ifndef OPENSSL_NO_SOCK int generate_cookie_callback(SSL *ssl, unsigned char *cookie, unsigned int *cookie_len) { unsigned char *buffer; size_t length = 0; unsigned short port; BIO_ADDR *lpeer = NULL, *peer = NULL; /* Initialize a random secret */ if (!cookie_initialized) { if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) { BIO_printf(bio_err, "error setting random cookie secret\n"); return 0; } cookie_initialized = 1; } if (SSL_is_dtls(ssl)) { lpeer = peer = BIO_ADDR_new(); if (peer == NULL) { BIO_printf(bio_err, "memory full\n"); return 0; } /* Read peer information */ (void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer); } else { peer = ourpeer; } /* Create buffer with peer's address and port */ if (!BIO_ADDR_rawaddress(peer, NULL, &length)) { BIO_printf(bio_err, "Failed getting peer address\n"); return 0; } OPENSSL_assert(length != 0); port = BIO_ADDR_rawport(peer); length += sizeof(port); buffer = app_malloc(length, "cookie generate buffer"); memcpy(buffer, &port, sizeof(port)); BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL); /* Calculate HMAC of buffer using the secret */ HMAC(EVP_sha1(), cookie_secret, COOKIE_SECRET_LENGTH, buffer, length, cookie, cookie_len); OPENSSL_free(buffer); BIO_ADDR_free(lpeer); return 1; } int verify_cookie_callback(SSL *ssl, const unsigned char *cookie, unsigned int cookie_len) { unsigned char result[EVP_MAX_MD_SIZE]; unsigned int resultlength; /* Note: we check cookie_initialized because if it's not, * it cannot be valid */ if (cookie_initialized && generate_cookie_callback(ssl, result, &resultlength) && cookie_len == resultlength && memcmp(result, cookie, resultlength) == 0) return 1; return 0; } int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie, size_t *cookie_len) { unsigned int temp; int res = generate_cookie_callback(ssl, cookie, &temp); if (res != 0) *cookie_len = temp; return res; } int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie, size_t cookie_len) { return verify_cookie_callback(ssl, cookie, cookie_len); } #endif /* * Example of extended certificate handling. Where the standard support of * one certificate per algorithm is not sufficient an application can decide * which certificate(s) to use at runtime based on whatever criteria it deems * appropriate. */ /* Linked list of certificates, keys and chains */ struct ssl_excert_st { int certform; const char *certfile; int keyform; const char *keyfile; const char *chainfile; X509 *cert; EVP_PKEY *key; STACK_OF(X509) *chain; int build_chain; struct ssl_excert_st *next, *prev; }; static STRINT_PAIR chain_flags[] = { {"Overall Validity", CERT_PKEY_VALID}, {"Sign with EE key", CERT_PKEY_SIGN}, {"EE signature", CERT_PKEY_EE_SIGNATURE}, {"CA signature", CERT_PKEY_CA_SIGNATURE}, {"EE key parameters", CERT_PKEY_EE_PARAM}, {"CA key parameters", CERT_PKEY_CA_PARAM}, {"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN}, {"Issuer Name", CERT_PKEY_ISSUER_NAME}, {"Certificate Type", CERT_PKEY_CERT_TYPE}, {NULL} }; static void print_chain_flags(SSL *s, int flags) { STRINT_PAIR *pp; for (pp = chain_flags; pp->name; ++pp) BIO_printf(bio_err, "\t%s: %s\n", pp->name, (flags & pp->retval) ? "OK" : "NOT OK"); BIO_printf(bio_err, "\tSuite B: "); if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS) BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n"); else BIO_printf(bio_err, "not tested\n"); } /* * Very basic selection callback: just use any certificate chain reported as * valid. More sophisticated could prioritise according to local policy. */ static int set_cert_cb(SSL *ssl, void *arg) { int i, rv; SSL_EXCERT *exc = arg; #ifdef CERT_CB_TEST_RETRY static int retry_cnt; if (retry_cnt < 5) { retry_cnt++; BIO_printf(bio_err, "Certificate callback retry test: count %d\n", retry_cnt); return -1; } #endif SSL_certs_clear(ssl); if (exc == NULL) return 1; /* * Go to end of list and traverse backwards since we prepend newer * entries this retains the original order. */ while (exc->next != NULL) exc = exc->next; i = 0; while (exc != NULL) { i++; rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain); BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i); X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0, get_nameopt()); BIO_puts(bio_err, "\n"); print_chain_flags(ssl, rv); if (rv & CERT_PKEY_VALID) { if (!SSL_use_certificate(ssl, exc->cert) || !SSL_use_PrivateKey(ssl, exc->key)) { return 0; } /* * NB: we wouldn't normally do this as it is not efficient * building chains on each connection better to cache the chain * in advance. */ if (exc->build_chain) { if (!SSL_build_cert_chain(ssl, 0)) return 0; } else if (exc->chain != NULL) { if (!SSL_set1_chain(ssl, exc->chain)) return 0; } } exc = exc->prev; } return 1; } void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc) { SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc); } static int ssl_excert_prepend(SSL_EXCERT **pexc) { SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert"); memset(exc, 0, sizeof(*exc)); exc->next = *pexc; *pexc = exc; if (exc->next) { exc->certform = exc->next->certform; exc->keyform = exc->next->keyform; exc->next->prev = exc; } else { exc->certform = FORMAT_PEM; exc->keyform = FORMAT_PEM; } return 1; } void ssl_excert_free(SSL_EXCERT *exc) { SSL_EXCERT *curr; if (exc == NULL) return; while (exc) { X509_free(exc->cert); EVP_PKEY_free(exc->key); sk_X509_pop_free(exc->chain, X509_free); curr = exc; exc = exc->next; OPENSSL_free(curr); } } int load_excert(SSL_EXCERT **pexc) { SSL_EXCERT *exc = *pexc; if (exc == NULL) return 1; /* If nothing in list, free and set to NULL */ if (exc->certfile == NULL && exc->next == NULL) { ssl_excert_free(exc); *pexc = NULL; return 1; } for (; exc; exc = exc->next) { if (exc->certfile == NULL) { BIO_printf(bio_err, "Missing filename\n"); return 0; } exc->cert = load_cert(exc->certfile, exc->certform, "Server Certificate"); if (exc->cert == NULL) return 0; if (exc->keyfile != NULL) { exc->key = load_key(exc->keyfile, exc->keyform, 0, NULL, NULL, "Server Key"); } else { exc->key = load_key(exc->certfile, exc->certform, 0, NULL, NULL, "Server Key"); } if (exc->key == NULL) return 0; if (exc->chainfile != NULL) { if (!load_certs(exc->chainfile, &exc->chain, FORMAT_PEM, NULL, "Server Chain")) return 0; } } return 1; } enum range { OPT_X_ENUM }; int args_excert(int opt, SSL_EXCERT **pexc) { SSL_EXCERT *exc = *pexc; assert(opt > OPT_X__FIRST); assert(opt < OPT_X__LAST); if (exc == NULL) { if (!ssl_excert_prepend(&exc)) { BIO_printf(bio_err, " %s: Error initialising xcert\n", opt_getprog()); goto err; } *pexc = exc; } switch ((enum range)opt) { case OPT_X__FIRST: case OPT_X__LAST: return 0; case OPT_X_CERT: if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) { BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog()); goto err; } *pexc = exc; exc->certfile = opt_arg(); break; case OPT_X_KEY: if (exc->keyfile != NULL) { BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog()); goto err; } exc->keyfile = opt_arg(); break; case OPT_X_CHAIN: if (exc->chainfile != NULL) { BIO_printf(bio_err, "%s: Chain already specified\n", opt_getprog()); goto err; } exc->chainfile = opt_arg(); break; case OPT_X_CHAIN_BUILD: exc->build_chain = 1; break; case OPT_X_CERTFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->certform)) return 0; break; case OPT_X_KEYFORM: if (!opt_format(opt_arg(), OPT_FMT_PEMDER, &exc->keyform)) return 0; break; } return 1; err: ERR_print_errors(bio_err); ssl_excert_free(exc); *pexc = NULL; return 0; } static void print_raw_cipherlist(SSL *s) { const unsigned char *rlist; static const unsigned char scsv_id[] = { 0, 0xFF }; size_t i, rlistlen, num; if (!SSL_is_server(s)) return; num = SSL_get0_raw_cipherlist(s, NULL); OPENSSL_assert(num == 2); rlistlen = SSL_get0_raw_cipherlist(s, &rlist); BIO_puts(bio_err, "Client cipher list: "); for (i = 0; i < rlistlen; i += num, rlist += num) { const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist); if (i) BIO_puts(bio_err, ":"); if (c != NULL) { BIO_puts(bio_err, SSL_CIPHER_get_name(c)); } else if (memcmp(rlist, scsv_id, num) == 0) { BIO_puts(bio_err, "SCSV"); } else { size_t j; BIO_puts(bio_err, "0x"); for (j = 0; j < num; j++) BIO_printf(bio_err, "%02X", rlist[j]); } } BIO_puts(bio_err, "\n"); } /* * Hex encoder for TLSA RRdata, not ':' delimited. */ static char *hexencode(const unsigned char *data, size_t len) { static const char *hex = "0123456789abcdef"; char *out; char *cp; size_t outlen = 2 * len + 1; int ilen = (int) outlen; if (outlen < len || ilen < 0 || outlen != (size_t)ilen) { BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n", opt_getprog(), len); exit(1); } cp = out = app_malloc(ilen, "TLSA hex data buffer"); while (len-- > 0) { *cp++ = hex[(*data >> 4) & 0x0f]; *cp++ = hex[*data++ & 0x0f]; } *cp = '\0'; return out; } void print_verify_detail(SSL *s, BIO *bio) { int mdpth; EVP_PKEY *mspki; long verify_err = SSL_get_verify_result(s); if (verify_err == X509_V_OK) { const char *peername = SSL_get0_peername(s); BIO_printf(bio, "Verification: OK\n"); if (peername != NULL) BIO_printf(bio, "Verified peername: %s\n", peername); } else { const char *reason = X509_verify_cert_error_string(verify_err); BIO_printf(bio, "Verification error: %s\n", reason); } if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) { uint8_t usage, selector, mtype; const unsigned char *data = NULL; size_t dlen = 0; char *hexdata; mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen); /* * The TLSA data field can be quite long when it is a certificate, * public key or even a SHA2-512 digest. Because the initial octets of * ASN.1 certificates and public keys contain mostly boilerplate OIDs * and lengths, we show the last 12 bytes of the data instead, as these * are more likely to distinguish distinct TLSA records. */ #define TLSA_TAIL_SIZE 12 if (dlen > TLSA_TAIL_SIZE) hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE); else hexdata = hexencode(data, dlen); BIO_printf(bio, "DANE TLSA %d %d %d %s%s %s at depth %d\n", usage, selector, mtype, (dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata, (mspki != NULL) ? "signed the certificate" : mdpth ? "matched TA certificate" : "matched EE certificate", mdpth); OPENSSL_free(hexdata); } } void print_ssl_summary(SSL *s) { const SSL_CIPHER *c; X509 *peer; BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s)); print_raw_cipherlist(s); c = SSL_get_current_cipher(s); BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c)); do_print_sigalgs(bio_err, s, 0); peer = SSL_get_peer_certificate(s); if (peer != NULL) { int nid; BIO_puts(bio_err, "Peer certificate: "); X509_NAME_print_ex(bio_err, X509_get_subject_name(peer), 0, get_nameopt()); BIO_puts(bio_err, "\n"); if (SSL_get_peer_signature_nid(s, &nid)) BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid)); if (SSL_get_peer_signature_type_nid(s, &nid)) BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid)); print_verify_detail(s, bio_err); } else { BIO_puts(bio_err, "No peer certificate\n"); } X509_free(peer); #ifndef OPENSSL_NO_EC ssl_print_point_formats(bio_err, s); if (SSL_is_server(s)) ssl_print_groups(bio_err, s, 1); else ssl_print_tmp_key(bio_err, s); #else if (!SSL_is_server(s)) ssl_print_tmp_key(bio_err, s); #endif } int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str, SSL_CTX *ctx) { int i; SSL_CONF_CTX_set_ssl_ctx(cctx, ctx); for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) { const char *flag = sk_OPENSSL_STRING_value(str, i); const char *arg = sk_OPENSSL_STRING_value(str, i + 1); if (SSL_CONF_cmd(cctx, flag, arg) <= 0) { if (arg != NULL) BIO_printf(bio_err, "Error with command: \"%s %s\"\n", flag, arg); else BIO_printf(bio_err, "Error with command: \"%s\"\n", flag); ERR_print_errors(bio_err); return 0; } } if (!SSL_CONF_CTX_finish(cctx)) { BIO_puts(bio_err, "Error finishing context\n"); ERR_print_errors(bio_err); return 0; } return 1; } static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls) { X509_CRL *crl; int i; for (i = 0; i < sk_X509_CRL_num(crls); i++) { crl = sk_X509_CRL_value(crls, i); X509_STORE_add_crl(st, crl); } return 1; } int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download) { X509_STORE *st; st = SSL_CTX_get_cert_store(ctx); add_crls_store(st, crls); if (crl_download) store_setup_crl_download(st); return 1; } int ssl_load_stores(SSL_CTX *ctx, const char *vfyCApath, const char *vfyCAfile, const char *chCApath, const char *chCAfile, STACK_OF(X509_CRL) *crls, int crl_download) { X509_STORE *vfy = NULL, *ch = NULL; int rv = 0; if (vfyCApath != NULL || vfyCAfile != NULL) { vfy = X509_STORE_new(); if (vfy == NULL) goto err; if (!X509_STORE_load_locations(vfy, vfyCAfile, vfyCApath)) goto err; add_crls_store(vfy, crls); SSL_CTX_set1_verify_cert_store(ctx, vfy); if (crl_download) store_setup_crl_download(vfy); } if (chCApath != NULL || chCAfile != NULL) { ch = X509_STORE_new(); if (ch == NULL) goto err; if (!X509_STORE_load_locations(ch, chCAfile, chCApath)) goto err; SSL_CTX_set1_chain_cert_store(ctx, ch); } rv = 1; err: X509_STORE_free(vfy); X509_STORE_free(ch); return rv; } /* Verbose print out of security callback */ typedef struct { BIO *out; int verbose; int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex); } security_debug_ex; static STRINT_PAIR callback_types[] = { {"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED}, {"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED}, {"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK}, #ifndef OPENSSL_NO_DH {"Temp DH key bits", SSL_SECOP_TMP_DH}, #endif {"Supported Curve", SSL_SECOP_CURVE_SUPPORTED}, {"Shared Curve", SSL_SECOP_CURVE_SHARED}, {"Check Curve", SSL_SECOP_CURVE_CHECK}, {"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED}, {"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED}, {"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK}, {"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK}, {"Certificate chain EE key", SSL_SECOP_EE_KEY}, {"Certificate chain CA key", SSL_SECOP_CA_KEY}, {"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY}, {"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY}, {"Certificate chain CA digest", SSL_SECOP_CA_MD}, {"Peer chain CA digest", SSL_SECOP_PEER_CA_MD}, {"SSL compression", SSL_SECOP_COMPRESSION}, {"Session ticket", SSL_SECOP_TICKET}, {NULL} }; static int security_callback_debug(const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { security_debug_ex *sdb = ex; int rv, show_bits = 1, cert_md = 0; const char *nm; int show_nm; rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex); if (rv == 1 && sdb->verbose < 2) return 1; BIO_puts(sdb->out, "Security callback: "); nm = lookup(op, callback_types, NULL); show_nm = nm != NULL; switch (op) { case SSL_SECOP_TICKET: case SSL_SECOP_COMPRESSION: show_bits = 0; show_nm = 0; break; case SSL_SECOP_VERSION: BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???")); show_bits = 0; show_nm = 0; break; case SSL_SECOP_CA_MD: case SSL_SECOP_PEER_CA_MD: cert_md = 1; break; case SSL_SECOP_SIGALG_SUPPORTED: case SSL_SECOP_SIGALG_SHARED: case SSL_SECOP_SIGALG_CHECK: case SSL_SECOP_SIGALG_MASK: show_nm = 0; break; } if (show_nm) BIO_printf(sdb->out, "%s=", nm); switch (op & SSL_SECOP_OTHER_TYPE) { case SSL_SECOP_OTHER_CIPHER: BIO_puts(sdb->out, SSL_CIPHER_get_name(other)); break; #ifndef OPENSSL_NO_EC case SSL_SECOP_OTHER_CURVE: { const char *cname; cname = EC_curve_nid2nist(nid); if (cname == NULL) cname = OBJ_nid2sn(nid); BIO_puts(sdb->out, cname); } break; #endif #ifndef OPENSSL_NO_DH case SSL_SECOP_OTHER_DH: { DH *dh = other; BIO_printf(sdb->out, "%d", DH_bits(dh)); break; } #endif case SSL_SECOP_OTHER_CERT: { if (cert_md) { int sig_nid = X509_get_signature_nid(other); BIO_puts(sdb->out, OBJ_nid2sn(sig_nid)); } else { EVP_PKEY *pkey = X509_get0_pubkey(other); const char *algname = ""; EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &algname, EVP_PKEY_get0_asn1(pkey)); BIO_printf(sdb->out, "%s, bits=%d", algname, EVP_PKEY_bits(pkey)); } break; } case SSL_SECOP_OTHER_SIGALG: { const unsigned char *salg = other; const char *sname = NULL; int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */ /* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */ if (nm != NULL) BIO_printf(sdb->out, "%s", nm); else BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op); sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL); if (sname != NULL) { BIO_printf(sdb->out, " scheme=%s", sname); } else { int alg_code = salg[1]; int hash_code = salg[0]; const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL); const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL); if (alg_str != NULL && hash_str != NULL) BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str); else BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code); } } } if (show_bits) BIO_printf(sdb->out, ", security bits=%d", bits); BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no"); return rv; } void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose) { static security_debug_ex sdb; sdb.out = bio_err; sdb.verbose = verbose; sdb.old_cb = SSL_CTX_get_security_callback(ctx); SSL_CTX_set_security_callback(ctx, security_callback_debug); SSL_CTX_set0_security_ex_data(ctx, &sdb); } static void keylog_callback(const SSL *ssl, const char *line) { if (bio_keylog == NULL) { BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n"); return; } /* * There might be concurrent writers to the keylog file, so we must ensure * that the given line is written at once. */ BIO_printf(bio_keylog, "%s\n", line); (void)BIO_flush(bio_keylog); } int set_keylog_file(SSL_CTX *ctx, const char *keylog_file) { /* Close any open files */ BIO_free_all(bio_keylog); bio_keylog = NULL; if (ctx == NULL || keylog_file == NULL) { /* Keylogging is disabled, OK. */ return 0; } /* * Append rather than write in order to allow concurrent modification. * Furthermore, this preserves existing keylog files which is useful when * the tool is run multiple times. */ bio_keylog = BIO_new_file(keylog_file, "a"); if (bio_keylog == NULL) { BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file); return 1; } /* Write a header for seekable, empty files (this excludes pipes). */ if (BIO_tell(bio_keylog) == 0) { BIO_puts(bio_keylog, "# SSL/TLS secrets log file, generated by OpenSSL\n"); (void)BIO_flush(bio_keylog); } SSL_CTX_set_keylog_callback(ctx, keylog_callback); return 0; } void print_ca_names(BIO *bio, SSL *s) { const char *cs = SSL_is_server(s) ? "server" : "client"; const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s); int i; if (sk == NULL || sk_X509_NAME_num(sk) == 0) { if (!SSL_is_server(s)) BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs); return; } BIO_printf(bio, "---\nAcceptable %s certificate CA names\n",cs); for (i = 0; i < sk_X509_NAME_num(sk); i++) { X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt()); BIO_write(bio, "\n", 1); } }