//=== StdLibraryFunctionsChecker.cpp - Model standard functions -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This checker improves modeling of a few simple library functions. // // This checker provides a specification format - `Summary' - and // contains descriptions of some library functions in this format. Each // specification contains a list of branches for splitting the program state // upon call, and range constraints on argument and return-value symbols that // are satisfied on each branch. This spec can be expanded to include more // items, like external effects of the function. // // The main difference between this approach and the body farms technique is // in more explicit control over how many branches are produced. For example, // consider standard C function `ispunct(int x)', which returns a non-zero value // iff `x' is a punctuation character, that is, when `x' is in range // ['!', '/'] [':', '@'] U ['[', '\`'] U ['{', '~']. // `Summary' provides only two branches for this function. However, // any attempt to describe this range with if-statements in the body farm // would result in many more branches. Because each branch needs to be analyzed // independently, this significantly reduces performance. Additionally, // once we consider a branch on which `x' is in range, say, ['!', '/'], // we assume that such branch is an important separate path through the program, // which may lead to false positives because considering this particular path // was not consciously intended, and therefore it might have been unreachable. // // This checker uses eval::Call for modeling pure functions (functions without // side effets), for which their `Summary' is a precise model. This avoids // unnecessary invalidation passes. Conflicts with other checkers are unlikely // because if the function has no other effects, other checkers would probably // never want to improve upon the modeling done by this checker. // // Non-pure functions, for which only partial improvement over the default // behavior is expected, are modeled via check::PostCall, non-intrusively. // // The following standard C functions are currently supported: // // fgetc getline isdigit isupper toascii // fread isalnum isgraph isxdigit // fwrite isalpha islower read // getc isascii isprint write // getchar isblank ispunct toupper // getdelim iscntrl isspace tolower // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include using namespace clang; using namespace clang::ento; namespace { class StdLibraryFunctionsChecker : public Checker { class Summary; /// Specify how much the analyzer engine should entrust modeling this function /// to us. If he doesn't, he performs additional invalidations. enum InvalidationKind { NoEvalCall, EvalCallAsPure }; // The universal integral type to use in value range descriptions. // Unsigned to make sure overflows are well-defined. typedef uint64_t RangeInt; /// Normally, describes a single range constraint, eg. {{0, 1}, {3, 4}} is /// a non-negative integer, which less than 5 and not equal to 2. For /// `ComparesToArgument', holds information about how exactly to compare to /// the argument. typedef std::vector> IntRangeVector; /// A reference to an argument or return value by its number. /// ArgNo in CallExpr and CallEvent is defined as Unsigned, but /// obviously uint32_t should be enough for all practical purposes. typedef uint32_t ArgNo; static const ArgNo Ret; /// Returns the string representation of an argument index. /// E.g.: (1) -> '1st arg', (2) - > '2nd arg' static SmallString<8> getArgDesc(ArgNo); class ValueConstraint; // Pointer to the ValueConstraint. We need a copyable, polymorphic and // default initialize able type (vector needs that). A raw pointer was good, // however, we cannot default initialize that. unique_ptr makes the Summary // class non-copyable, therefore not an option. Releasing the copyability // requirement would render the initialization of the Summary map infeasible. using ValueConstraintPtr = std::shared_ptr; /// Polymorphic base class that represents a constraint on a given argument /// (or return value) of a function. Derived classes implement different kind /// of constraints, e.g range constraints or correlation between two /// arguments. class ValueConstraint { public: ValueConstraint(ArgNo ArgN) : ArgN(ArgN) {} virtual ~ValueConstraint() {} /// Apply the effects of the constraint on the given program state. If null /// is returned then the constraint is not feasible. virtual ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, const Summary &Summary, CheckerContext &C) const = 0; virtual ValueConstraintPtr negate() const { llvm_unreachable("Not implemented"); }; // Check whether the constraint is malformed or not. It is malformed if the // specified argument has a mismatch with the given FunctionDecl (e.g. the // arg number is out-of-range of the function's argument list). bool checkValidity(const FunctionDecl *FD) const { const bool ValidArg = ArgN == Ret || ArgN < FD->getNumParams(); assert(ValidArg && "Arg out of range!"); if (!ValidArg) return false; // Subclasses may further refine the validation. return checkSpecificValidity(FD); } ArgNo getArgNo() const { return ArgN; } // Return those arguments that should be tracked when we report a bug. By // default it is the argument that is constrained, however, in some special // cases we need to track other arguments as well. E.g. a buffer size might // be encoded in another argument. virtual std::vector getArgsToTrack() const { return {ArgN}; } virtual StringRef getName() const = 0; // Give a description that explains the constraint to the user. Used when // the bug is reported. virtual std::string describe(ProgramStateRef State, const Summary &Summary) const { // There are some descendant classes that are not used as argument // constraints, e.g. ComparisonConstraint. In that case we can safely // ignore the implementation of this function. llvm_unreachable("Not implemented"); } protected: ArgNo ArgN; // Argument to which we apply the constraint. /// Do polymorphic sanity check on the constraint. virtual bool checkSpecificValidity(const FunctionDecl *FD) const { return true; } }; /// Given a range, should the argument stay inside or outside this range? enum RangeKind { OutOfRange, WithinRange }; /// Encapsulates a range on a single symbol. class RangeConstraint : public ValueConstraint { RangeKind Kind; // A range is formed as a set of intervals (sub-ranges). // E.g. {['A', 'Z'], ['a', 'z']} // // The default constructed RangeConstraint has an empty range set, applying // such constraint does not involve any assumptions, thus the State remains // unchanged. This is meaningful, if the range is dependent on a looked up // type (e.g. [0, Socklen_tMax]). If the type is not found, then the range // is default initialized to be empty. IntRangeVector Ranges; public: StringRef getName() const override { return "Range"; } RangeConstraint(ArgNo ArgN, RangeKind Kind, const IntRangeVector &Ranges) : ValueConstraint(ArgN), Kind(Kind), Ranges(Ranges) {} std::string describe(ProgramStateRef State, const Summary &Summary) const override; const IntRangeVector &getRanges() const { return Ranges; } private: ProgramStateRef applyAsOutOfRange(ProgramStateRef State, const CallEvent &Call, const Summary &Summary) const; ProgramStateRef applyAsWithinRange(ProgramStateRef State, const CallEvent &Call, const Summary &Summary) const; public: ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, const Summary &Summary, CheckerContext &C) const override { switch (Kind) { case OutOfRange: return applyAsOutOfRange(State, Call, Summary); case WithinRange: return applyAsWithinRange(State, Call, Summary); } llvm_unreachable("Unknown range kind!"); } ValueConstraintPtr negate() const override { RangeConstraint Tmp(*this); switch (Kind) { case OutOfRange: Tmp.Kind = WithinRange; break; case WithinRange: Tmp.Kind = OutOfRange; break; } return std::make_shared(Tmp); } bool checkSpecificValidity(const FunctionDecl *FD) const override { const bool ValidArg = getArgType(FD, ArgN)->isIntegralType(FD->getASTContext()); assert(ValidArg && "This constraint should be applied on an integral type"); return ValidArg; } }; class ComparisonConstraint : public ValueConstraint { BinaryOperator::Opcode Opcode; ArgNo OtherArgN; public: virtual StringRef getName() const override { return "Comparison"; }; ComparisonConstraint(ArgNo ArgN, BinaryOperator::Opcode Opcode, ArgNo OtherArgN) : ValueConstraint(ArgN), Opcode(Opcode), OtherArgN(OtherArgN) {} ArgNo getOtherArgNo() const { return OtherArgN; } BinaryOperator::Opcode getOpcode() const { return Opcode; } ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, const Summary &Summary, CheckerContext &C) const override; }; class NotNullConstraint : public ValueConstraint { using ValueConstraint::ValueConstraint; // This variable has a role when we negate the constraint. bool CannotBeNull = true; public: std::string describe(ProgramStateRef State, const Summary &Summary) const override; StringRef getName() const override { return "NonNull"; } ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, const Summary &Summary, CheckerContext &C) const override { SVal V = getArgSVal(Call, getArgNo()); if (V.isUndef()) return State; DefinedOrUnknownSVal L = V.castAs(); if (!L.getAs()) return State; return State->assume(L, CannotBeNull); } ValueConstraintPtr negate() const override { NotNullConstraint Tmp(*this); Tmp.CannotBeNull = !this->CannotBeNull; return std::make_shared(Tmp); } bool checkSpecificValidity(const FunctionDecl *FD) const override { const bool ValidArg = getArgType(FD, ArgN)->isPointerType(); assert(ValidArg && "This constraint should be applied only on a pointer type"); return ValidArg; } }; // Represents a buffer argument with an additional size constraint. The // constraint may be a concrete value, or a symbolic value in an argument. // Example 1. Concrete value as the minimum buffer size. // char *asctime_r(const struct tm *restrict tm, char *restrict buf); // // `buf` size must be at least 26 bytes according the POSIX standard. // Example 2. Argument as a buffer size. // ctime_s(char *buffer, rsize_t bufsz, const time_t *time); // Example 3. The size is computed as a multiplication of other args. // size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream); // // Here, ptr is the buffer, and its minimum size is `size * nmemb`. class BufferSizeConstraint : public ValueConstraint { // The concrete value which is the minimum size for the buffer. llvm::Optional ConcreteSize; // The argument which holds the size of the buffer. llvm::Optional SizeArgN; // The argument which is a multiplier to size. This is set in case of // `fread` like functions where the size is computed as a multiplication of // two arguments. llvm::Optional SizeMultiplierArgN; // The operator we use in apply. This is negated in negate(). BinaryOperator::Opcode Op = BO_LE; public: StringRef getName() const override { return "BufferSize"; } BufferSizeConstraint(ArgNo Buffer, llvm::APSInt BufMinSize) : ValueConstraint(Buffer), ConcreteSize(BufMinSize) {} BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize) : ValueConstraint(Buffer), SizeArgN(BufSize) {} BufferSizeConstraint(ArgNo Buffer, ArgNo BufSize, ArgNo BufSizeMultiplier) : ValueConstraint(Buffer), SizeArgN(BufSize), SizeMultiplierArgN(BufSizeMultiplier) {} std::vector getArgsToTrack() const override { std::vector Result{ArgN}; if (SizeArgN) Result.push_back(*SizeArgN); if (SizeMultiplierArgN) Result.push_back(*SizeMultiplierArgN); return Result; } std::string describe(ProgramStateRef State, const Summary &Summary) const override; ProgramStateRef apply(ProgramStateRef State, const CallEvent &Call, const Summary &Summary, CheckerContext &C) const override { SValBuilder &SvalBuilder = C.getSValBuilder(); // The buffer argument. SVal BufV = getArgSVal(Call, getArgNo()); // Get the size constraint. const SVal SizeV = [this, &State, &Call, &Summary, &SvalBuilder]() { if (ConcreteSize) { return SVal(SvalBuilder.makeIntVal(*ConcreteSize)); } assert(SizeArgN && "The constraint must be either a concrete value or " "encoded in an argument."); // The size argument. SVal SizeV = getArgSVal(Call, *SizeArgN); // Multiply with another argument if given. if (SizeMultiplierArgN) { SVal SizeMulV = getArgSVal(Call, *SizeMultiplierArgN); SizeV = SvalBuilder.evalBinOp(State, BO_Mul, SizeV, SizeMulV, Summary.getArgType(*SizeArgN)); } return SizeV; }(); // The dynamic size of the buffer argument, got from the analyzer engine. SVal BufDynSize = getDynamicExtentWithOffset(State, BufV); SVal Feasible = SvalBuilder.evalBinOp(State, Op, SizeV, BufDynSize, SvalBuilder.getContext().BoolTy); if (auto F = Feasible.getAs()) return State->assume(*F, true); // We can get here only if the size argument or the dynamic size is // undefined. But the dynamic size should never be undefined, only // unknown. So, here, the size of the argument is undefined, i.e. we // cannot apply the constraint. Actually, other checkers like // CallAndMessage should catch this situation earlier, because we call a // function with an uninitialized argument. llvm_unreachable("Size argument or the dynamic size is Undefined"); } ValueConstraintPtr negate() const override { BufferSizeConstraint Tmp(*this); Tmp.Op = BinaryOperator::negateComparisonOp(Op); return std::make_shared(Tmp); } bool checkSpecificValidity(const FunctionDecl *FD) const override { const bool ValidArg = getArgType(FD, ArgN)->isPointerType(); assert(ValidArg && "This constraint should be applied only on a pointer type"); return ValidArg; } }; /// The complete list of constraints that defines a single branch. typedef std::vector ConstraintSet; using ArgTypes = std::vector>; using RetType = Optional; // A placeholder type, we use it whenever we do not care about the concrete // type in a Signature. const QualType Irrelevant{}; bool static isIrrelevant(QualType T) { return T.isNull(); } // The signature of a function we want to describe with a summary. This is a // concessive signature, meaning there may be irrelevant types in the // signature which we do not check against a function with concrete types. // All types in the spec need to be canonical. class Signature { using ArgQualTypes = std::vector; ArgQualTypes ArgTys; QualType RetTy; // True if any component type is not found by lookup. bool Invalid = false; public: // Construct a signature from optional types. If any of the optional types // are not set then the signature will be invalid. Signature(ArgTypes ArgTys, RetType RetTy) { for (Optional Arg : ArgTys) { if (!Arg) { Invalid = true; return; } else { assertArgTypeSuitableForSignature(*Arg); this->ArgTys.push_back(*Arg); } } if (!RetTy) { Invalid = true; return; } else { assertRetTypeSuitableForSignature(*RetTy); this->RetTy = *RetTy; } } bool isInvalid() const { return Invalid; } bool matches(const FunctionDecl *FD) const; private: static void assertArgTypeSuitableForSignature(QualType T) { assert((T.isNull() || !T->isVoidType()) && "We should have no void types in the spec"); assert((T.isNull() || T.isCanonical()) && "We should only have canonical types in the spec"); } static void assertRetTypeSuitableForSignature(QualType T) { assert((T.isNull() || T.isCanonical()) && "We should only have canonical types in the spec"); } }; static QualType getArgType(const FunctionDecl *FD, ArgNo ArgN) { assert(FD && "Function must be set"); QualType T = (ArgN == Ret) ? FD->getReturnType().getCanonicalType() : FD->getParamDecl(ArgN)->getType().getCanonicalType(); return T; } using Cases = std::vector; /// A summary includes information about /// * function prototype (signature) /// * approach to invalidation, /// * a list of branches - a list of list of ranges - /// A branch represents a path in the exploded graph of a function (which /// is a tree). So, a branch is a series of assumptions. In other words, /// branches represent split states and additional assumptions on top of /// the splitting assumption. /// For example, consider the branches in `isalpha(x)` /// Branch 1) /// x is in range ['A', 'Z'] or in ['a', 'z'] /// then the return value is not 0. (I.e. out-of-range [0, 0]) /// Branch 2) /// x is out-of-range ['A', 'Z'] and out-of-range ['a', 'z'] /// then the return value is 0. /// * a list of argument constraints, that must be true on every branch. /// If these constraints are not satisfied that means a fatal error /// usually resulting in undefined behaviour. /// /// Application of a summary: /// The signature and argument constraints together contain information /// about which functions are handled by the summary. The signature can use /// "wildcards", i.e. Irrelevant types. Irrelevant type of a parameter in /// a signature means that type is not compared to the type of the parameter /// in the found FunctionDecl. Argument constraints may specify additional /// rules for the given parameter's type, those rules are checked once the /// signature is matched. class Summary { const InvalidationKind InvalidationKd; Cases CaseConstraints; ConstraintSet ArgConstraints; // The function to which the summary applies. This is set after lookup and // match to the signature. const FunctionDecl *FD = nullptr; public: Summary(InvalidationKind InvalidationKd) : InvalidationKd(InvalidationKd) {} Summary &Case(ConstraintSet &&CS) { CaseConstraints.push_back(std::move(CS)); return *this; } Summary &Case(const ConstraintSet &CS) { CaseConstraints.push_back(CS); return *this; } Summary &ArgConstraint(ValueConstraintPtr VC) { assert(VC->getArgNo() != Ret && "Arg constraint should not refer to the return value"); ArgConstraints.push_back(VC); return *this; } InvalidationKind getInvalidationKd() const { return InvalidationKd; } const Cases &getCaseConstraints() const { return CaseConstraints; } const ConstraintSet &getArgConstraints() const { return ArgConstraints; } QualType getArgType(ArgNo ArgN) const { return StdLibraryFunctionsChecker::getArgType(FD, ArgN); } // Returns true if the summary should be applied to the given function. // And if yes then store the function declaration. bool matchesAndSet(const Signature &Sign, const FunctionDecl *FD) { bool Result = Sign.matches(FD) && validateByConstraints(FD); if (Result) { assert(!this->FD && "FD must not be set more than once"); this->FD = FD; } return Result; } private: // Once we know the exact type of the function then do sanity check on all // the given constraints. bool validateByConstraints(const FunctionDecl *FD) const { for (const ConstraintSet &Case : CaseConstraints) for (const ValueConstraintPtr &Constraint : Case) if (!Constraint->checkValidity(FD)) return false; for (const ValueConstraintPtr &Constraint : ArgConstraints) if (!Constraint->checkValidity(FD)) return false; return true; } }; // The map of all functions supported by the checker. It is initialized // lazily, and it doesn't change after initialization. using FunctionSummaryMapType = llvm::DenseMap; mutable FunctionSummaryMapType FunctionSummaryMap; mutable std::unique_ptr BT_InvalidArg; mutable bool SummariesInitialized = false; static SVal getArgSVal(const CallEvent &Call, ArgNo ArgN) { return ArgN == Ret ? Call.getReturnValue() : Call.getArgSVal(ArgN); } public: void checkPreCall(const CallEvent &Call, CheckerContext &C) const; void checkPostCall(const CallEvent &Call, CheckerContext &C) const; bool evalCall(const CallEvent &Call, CheckerContext &C) const; enum CheckKind { CK_StdCLibraryFunctionArgsChecker, CK_StdCLibraryFunctionsTesterChecker, CK_NumCheckKinds }; DefaultBool ChecksEnabled[CK_NumCheckKinds]; CheckerNameRef CheckNames[CK_NumCheckKinds]; bool DisplayLoadedSummaries = false; bool ModelPOSIX = false; private: Optional findFunctionSummary(const FunctionDecl *FD, CheckerContext &C) const; Optional findFunctionSummary(const CallEvent &Call, CheckerContext &C) const; void initFunctionSummaries(CheckerContext &C) const; void reportBug(const CallEvent &Call, ExplodedNode *N, const ValueConstraint *VC, const Summary &Summary, CheckerContext &C) const { if (!ChecksEnabled[CK_StdCLibraryFunctionArgsChecker]) return; std::string Msg = (Twine("Function argument constraint is not satisfied, constraint: ") + VC->getName().data()) .str(); if (!BT_InvalidArg) BT_InvalidArg = std::make_unique( CheckNames[CK_StdCLibraryFunctionArgsChecker], "Unsatisfied argument constraints", categories::LogicError); auto R = std::make_unique(*BT_InvalidArg, Msg, N); for (ArgNo ArgN : VC->getArgsToTrack()) bugreporter::trackExpressionValue(N, Call.getArgExpr(ArgN), *R); // Highlight the range of the argument that was violated. R->addRange(Call.getArgSourceRange(VC->getArgNo())); // Describe the argument constraint in a note. R->addNote(VC->describe(C.getState(), Summary), R->getLocation(), Call.getArgSourceRange(VC->getArgNo())); C.emitReport(std::move(R)); } }; const StdLibraryFunctionsChecker::ArgNo StdLibraryFunctionsChecker::Ret = std::numeric_limits::max(); } // end of anonymous namespace static BasicValueFactory &getBVF(ProgramStateRef State) { ProgramStateManager &Mgr = State->getStateManager(); SValBuilder &SVB = Mgr.getSValBuilder(); return SVB.getBasicValueFactory(); } std::string StdLibraryFunctionsChecker::NotNullConstraint::describe( ProgramStateRef State, const Summary &Summary) const { SmallString<48> Result; Result += "The "; Result += getArgDesc(ArgN); Result += " should not be NULL"; return Result.c_str(); } std::string StdLibraryFunctionsChecker::RangeConstraint::describe( ProgramStateRef State, const Summary &Summary) const { BasicValueFactory &BVF = getBVF(State); QualType T = Summary.getArgType(getArgNo()); SmallString<48> Result; Result += "The "; Result += getArgDesc(ArgN); Result += " should be "; // Range kind as a string. Kind == OutOfRange ? Result += "out of" : Result += "within"; // Get the range values as a string. Result += " the range "; if (Ranges.size() > 1) Result += "["; unsigned I = Ranges.size(); for (const std::pair &R : Ranges) { Result += "["; const llvm::APSInt &Min = BVF.getValue(R.first, T); const llvm::APSInt &Max = BVF.getValue(R.second, T); Min.toString(Result); Result += ", "; Max.toString(Result); Result += "]"; if (--I > 0) Result += ", "; } if (Ranges.size() > 1) Result += "]"; return Result.c_str(); } SmallString<8> StdLibraryFunctionsChecker::getArgDesc(StdLibraryFunctionsChecker::ArgNo ArgN) { SmallString<8> Result; Result += std::to_string(ArgN + 1); Result += llvm::getOrdinalSuffix(ArgN + 1); Result += " arg"; return Result; } std::string StdLibraryFunctionsChecker::BufferSizeConstraint::describe( ProgramStateRef State, const Summary &Summary) const { SmallString<96> Result; Result += "The size of the "; Result += getArgDesc(ArgN); Result += " should be equal to or less than the value of "; if (ConcreteSize) { ConcreteSize->toString(Result); } else if (SizeArgN) { Result += "the "; Result += getArgDesc(*SizeArgN); if (SizeMultiplierArgN) { Result += " times the "; Result += getArgDesc(*SizeMultiplierArgN); } } return Result.c_str(); } ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsOutOfRange( ProgramStateRef State, const CallEvent &Call, const Summary &Summary) const { if (Ranges.empty()) return State; ProgramStateManager &Mgr = State->getStateManager(); SValBuilder &SVB = Mgr.getSValBuilder(); BasicValueFactory &BVF = SVB.getBasicValueFactory(); ConstraintManager &CM = Mgr.getConstraintManager(); QualType T = Summary.getArgType(getArgNo()); SVal V = getArgSVal(Call, getArgNo()); if (auto N = V.getAs()) { const IntRangeVector &R = getRanges(); size_t E = R.size(); for (size_t I = 0; I != E; ++I) { const llvm::APSInt &Min = BVF.getValue(R[I].first, T); const llvm::APSInt &Max = BVF.getValue(R[I].second, T); assert(Min <= Max); State = CM.assumeInclusiveRange(State, *N, Min, Max, false); if (!State) break; } } return State; } ProgramStateRef StdLibraryFunctionsChecker::RangeConstraint::applyAsWithinRange( ProgramStateRef State, const CallEvent &Call, const Summary &Summary) const { if (Ranges.empty()) return State; ProgramStateManager &Mgr = State->getStateManager(); SValBuilder &SVB = Mgr.getSValBuilder(); BasicValueFactory &BVF = SVB.getBasicValueFactory(); ConstraintManager &CM = Mgr.getConstraintManager(); QualType T = Summary.getArgType(getArgNo()); SVal V = getArgSVal(Call, getArgNo()); // "WithinRange R" is treated as "outside [T_MIN, T_MAX] \ R". // We cut off [T_MIN, min(R) - 1] and [max(R) + 1, T_MAX] if necessary, // and then cut away all holes in R one by one. // // E.g. consider a range list R as [A, B] and [C, D] // -------+--------+------------------+------------+-----------> // A B C D // Then we assume that the value is not in [-inf, A - 1], // then not in [D + 1, +inf], then not in [B + 1, C - 1] if (auto N = V.getAs()) { const IntRangeVector &R = getRanges(); size_t E = R.size(); const llvm::APSInt &MinusInf = BVF.getMinValue(T); const llvm::APSInt &PlusInf = BVF.getMaxValue(T); const llvm::APSInt &Left = BVF.getValue(R[0].first - 1ULL, T); if (Left != PlusInf) { assert(MinusInf <= Left); State = CM.assumeInclusiveRange(State, *N, MinusInf, Left, false); if (!State) return nullptr; } const llvm::APSInt &Right = BVF.getValue(R[E - 1].second + 1ULL, T); if (Right != MinusInf) { assert(Right <= PlusInf); State = CM.assumeInclusiveRange(State, *N, Right, PlusInf, false); if (!State) return nullptr; } for (size_t I = 1; I != E; ++I) { const llvm::APSInt &Min = BVF.getValue(R[I - 1].second + 1ULL, T); const llvm::APSInt &Max = BVF.getValue(R[I].first - 1ULL, T); if (Min <= Max) { State = CM.assumeInclusiveRange(State, *N, Min, Max, false); if (!State) return nullptr; } } } return State; } ProgramStateRef StdLibraryFunctionsChecker::ComparisonConstraint::apply( ProgramStateRef State, const CallEvent &Call, const Summary &Summary, CheckerContext &C) const { ProgramStateManager &Mgr = State->getStateManager(); SValBuilder &SVB = Mgr.getSValBuilder(); QualType CondT = SVB.getConditionType(); QualType T = Summary.getArgType(getArgNo()); SVal V = getArgSVal(Call, getArgNo()); BinaryOperator::Opcode Op = getOpcode(); ArgNo OtherArg = getOtherArgNo(); SVal OtherV = getArgSVal(Call, OtherArg); QualType OtherT = Summary.getArgType(OtherArg); // Note: we avoid integral promotion for comparison. OtherV = SVB.evalCast(OtherV, T, OtherT); if (auto CompV = SVB.evalBinOp(State, Op, V, OtherV, CondT) .getAs()) State = State->assume(*CompV, true); return State; } void StdLibraryFunctionsChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { Optional FoundSummary = findFunctionSummary(Call, C); if (!FoundSummary) return; const Summary &Summary = *FoundSummary; ProgramStateRef State = C.getState(); ProgramStateRef NewState = State; for (const ValueConstraintPtr &Constraint : Summary.getArgConstraints()) { ProgramStateRef SuccessSt = Constraint->apply(NewState, Call, Summary, C); ProgramStateRef FailureSt = Constraint->negate()->apply(NewState, Call, Summary, C); // The argument constraint is not satisfied. if (FailureSt && !SuccessSt) { if (ExplodedNode *N = C.generateErrorNode(NewState)) reportBug(Call, N, Constraint.get(), Summary, C); break; } else { // We will apply the constraint even if we cannot reason about the // argument. This means both SuccessSt and FailureSt can be true. If we // weren't applying the constraint that would mean that symbolic // execution continues on a code whose behaviour is undefined. assert(SuccessSt); NewState = SuccessSt; } } if (NewState && NewState != State) C.addTransition(NewState); } void StdLibraryFunctionsChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const { Optional FoundSummary = findFunctionSummary(Call, C); if (!FoundSummary) return; // Now apply the constraints. const Summary &Summary = *FoundSummary; ProgramStateRef State = C.getState(); // Apply case/branch specifications. for (const ConstraintSet &Case : Summary.getCaseConstraints()) { ProgramStateRef NewState = State; for (const ValueConstraintPtr &Constraint : Case) { NewState = Constraint->apply(NewState, Call, Summary, C); if (!NewState) break; } if (NewState && NewState != State) C.addTransition(NewState); } } bool StdLibraryFunctionsChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { Optional FoundSummary = findFunctionSummary(Call, C); if (!FoundSummary) return false; const Summary &Summary = *FoundSummary; switch (Summary.getInvalidationKd()) { case EvalCallAsPure: { ProgramStateRef State = C.getState(); const LocationContext *LC = C.getLocationContext(); const auto *CE = cast(Call.getOriginExpr()); SVal V = C.getSValBuilder().conjureSymbolVal( CE, LC, CE->getType().getCanonicalType(), C.blockCount()); State = State->BindExpr(CE, LC, V); C.addTransition(State); return true; } case NoEvalCall: // Summary tells us to avoid performing eval::Call. The function is possibly // evaluated by another checker, or evaluated conservatively. return false; } llvm_unreachable("Unknown invalidation kind!"); } bool StdLibraryFunctionsChecker::Signature::matches( const FunctionDecl *FD) const { assert(!isInvalid()); // Check the number of arguments. if (FD->param_size() != ArgTys.size()) return false; // The "restrict" keyword is illegal in C++, however, many libc // implementations use the "__restrict" compiler intrinsic in functions // prototypes. The "__restrict" keyword qualifies a type as a restricted type // even in C++. // In case of any non-C99 languages, we don't want to match based on the // restrict qualifier because we cannot know if the given libc implementation // qualifies the paramter type or not. auto RemoveRestrict = [&FD](QualType T) { if (!FD->getASTContext().getLangOpts().C99) T.removeLocalRestrict(); return T; }; // Check the return type. if (!isIrrelevant(RetTy)) { QualType FDRetTy = RemoveRestrict(FD->getReturnType().getCanonicalType()); if (RetTy != FDRetTy) return false; } // Check the argument types. for (size_t I = 0, E = ArgTys.size(); I != E; ++I) { QualType ArgTy = ArgTys[I]; if (isIrrelevant(ArgTy)) continue; QualType FDArgTy = RemoveRestrict(FD->getParamDecl(I)->getType().getCanonicalType()); if (ArgTy != FDArgTy) return false; } return true; } Optional StdLibraryFunctionsChecker::findFunctionSummary(const FunctionDecl *FD, CheckerContext &C) const { if (!FD) return None; initFunctionSummaries(C); auto FSMI = FunctionSummaryMap.find(FD->getCanonicalDecl()); if (FSMI == FunctionSummaryMap.end()) return None; return FSMI->second; } Optional StdLibraryFunctionsChecker::findFunctionSummary(const CallEvent &Call, CheckerContext &C) const { const FunctionDecl *FD = dyn_cast_or_null(Call.getDecl()); if (!FD) return None; return findFunctionSummary(FD, C); } void StdLibraryFunctionsChecker::initFunctionSummaries( CheckerContext &C) const { if (SummariesInitialized) return; SValBuilder &SVB = C.getSValBuilder(); BasicValueFactory &BVF = SVB.getBasicValueFactory(); const ASTContext &ACtx = BVF.getContext(); // Helper class to lookup a type by its name. class LookupType { const ASTContext &ACtx; public: LookupType(const ASTContext &ACtx) : ACtx(ACtx) {} // Find the type. If not found then the optional is not set. llvm::Optional operator()(StringRef Name) { IdentifierInfo &II = ACtx.Idents.get(Name); auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II); if (LookupRes.empty()) return None; // Prioritze typedef declarations. // This is needed in case of C struct typedefs. E.g.: // typedef struct FILE FILE; // In this case, we have a RecordDecl 'struct FILE' with the name 'FILE' // and we have a TypedefDecl with the name 'FILE'. for (Decl *D : LookupRes) if (auto *TD = dyn_cast(D)) return ACtx.getTypeDeclType(TD).getCanonicalType(); // Find the first TypeDecl. // There maybe cases when a function has the same name as a struct. // E.g. in POSIX: `struct stat` and the function `stat()`: // int stat(const char *restrict path, struct stat *restrict buf); for (Decl *D : LookupRes) if (auto *TD = dyn_cast(D)) return ACtx.getTypeDeclType(TD).getCanonicalType(); return None; } } lookupTy(ACtx); // Below are auxiliary classes to handle optional types that we get as a // result of the lookup. class GetRestrictTy { const ASTContext &ACtx; public: GetRestrictTy(const ASTContext &ACtx) : ACtx(ACtx) {} QualType operator()(QualType Ty) { return ACtx.getLangOpts().C99 ? ACtx.getRestrictType(Ty) : Ty; } Optional operator()(Optional Ty) { if (Ty) return operator()(*Ty); return None; } } getRestrictTy(ACtx); class GetPointerTy { const ASTContext &ACtx; public: GetPointerTy(const ASTContext &ACtx) : ACtx(ACtx) {} QualType operator()(QualType Ty) { return ACtx.getPointerType(Ty); } Optional operator()(Optional Ty) { if (Ty) return operator()(*Ty); return None; } } getPointerTy(ACtx); class { public: Optional operator()(Optional Ty) { return Ty ? Optional(Ty->withConst()) : None; } QualType operator()(QualType Ty) { return Ty.withConst(); } } getConstTy; class GetMaxValue { BasicValueFactory &BVF; public: GetMaxValue(BasicValueFactory &BVF) : BVF(BVF) {} Optional operator()(QualType Ty) { return BVF.getMaxValue(Ty).getLimitedValue(); } Optional operator()(Optional Ty) { if (Ty) { return operator()(*Ty); } return None; } } getMaxValue(BVF); // These types are useful for writing specifications quickly, // New specifications should probably introduce more types. // Some types are hard to obtain from the AST, eg. "ssize_t". // In such cases it should be possible to provide multiple variants // of function summary for common cases (eg. ssize_t could be int or long // or long long, so three summary variants would be enough). // Of course, function variants are also useful for C++ overloads. const QualType VoidTy = ACtx.VoidTy; const QualType CharTy = ACtx.CharTy; const QualType WCharTy = ACtx.WCharTy; const QualType IntTy = ACtx.IntTy; const QualType UnsignedIntTy = ACtx.UnsignedIntTy; const QualType LongTy = ACtx.LongTy; const QualType SizeTy = ACtx.getSizeType(); const QualType VoidPtrTy = getPointerTy(VoidTy); // void * const QualType IntPtrTy = getPointerTy(IntTy); // int * const QualType UnsignedIntPtrTy = getPointerTy(UnsignedIntTy); // unsigned int * const QualType VoidPtrRestrictTy = getRestrictTy(VoidPtrTy); const QualType ConstVoidPtrTy = getPointerTy(getConstTy(VoidTy)); // const void * const QualType CharPtrTy = getPointerTy(CharTy); // char * const QualType CharPtrRestrictTy = getRestrictTy(CharPtrTy); const QualType ConstCharPtrTy = getPointerTy(getConstTy(CharTy)); // const char * const QualType ConstCharPtrRestrictTy = getRestrictTy(ConstCharPtrTy); const QualType Wchar_tPtrTy = getPointerTy(WCharTy); // wchar_t * const QualType ConstWchar_tPtrTy = getPointerTy(getConstTy(WCharTy)); // const wchar_t * const QualType ConstVoidPtrRestrictTy = getRestrictTy(ConstVoidPtrTy); const QualType SizePtrTy = getPointerTy(SizeTy); const QualType SizePtrRestrictTy = getRestrictTy(SizePtrTy); const RangeInt IntMax = BVF.getMaxValue(IntTy).getLimitedValue(); const RangeInt UnsignedIntMax = BVF.getMaxValue(UnsignedIntTy).getLimitedValue(); const RangeInt LongMax = BVF.getMaxValue(LongTy).getLimitedValue(); const RangeInt SizeMax = BVF.getMaxValue(SizeTy).getLimitedValue(); // Set UCharRangeMax to min of int or uchar maximum value. // The C standard states that the arguments of functions like isalpha must // be representable as an unsigned char. Their type is 'int', so the max // value of the argument should be min(UCharMax, IntMax). This just happen // to be true for commonly used and well tested instruction set // architectures, but not for others. const RangeInt UCharRangeMax = std::min(BVF.getMaxValue(ACtx.UnsignedCharTy).getLimitedValue(), IntMax); // The platform dependent value of EOF. // Try our best to parse this from the Preprocessor, otherwise fallback to -1. const auto EOFv = [&C]() -> RangeInt { if (const llvm::Optional OptInt = tryExpandAsInteger("EOF", C.getPreprocessor())) return *OptInt; return -1; }(); // Auxiliary class to aid adding summaries to the summary map. struct AddToFunctionSummaryMap { const ASTContext &ACtx; FunctionSummaryMapType ⤅ bool DisplayLoadedSummaries; AddToFunctionSummaryMap(const ASTContext &ACtx, FunctionSummaryMapType &FSM, bool DisplayLoadedSummaries) : ACtx(ACtx), Map(FSM), DisplayLoadedSummaries(DisplayLoadedSummaries) { } // Add a summary to a FunctionDecl found by lookup. The lookup is performed // by the given Name, and in the global scope. The summary will be attached // to the found FunctionDecl only if the signatures match. // // Returns true if the summary has been added, false otherwise. bool operator()(StringRef Name, Signature Sign, Summary Sum) { if (Sign.isInvalid()) return false; IdentifierInfo &II = ACtx.Idents.get(Name); auto LookupRes = ACtx.getTranslationUnitDecl()->lookup(&II); if (LookupRes.empty()) return false; for (Decl *D : LookupRes) { if (auto *FD = dyn_cast(D)) { if (Sum.matchesAndSet(Sign, FD)) { auto Res = Map.insert({FD->getCanonicalDecl(), Sum}); assert(Res.second && "Function already has a summary set!"); (void)Res; if (DisplayLoadedSummaries) { llvm::errs() << "Loaded summary for: "; FD->print(llvm::errs()); llvm::errs() << "\n"; } return true; } } } return false; } // Add the same summary for different names with the Signature explicitly // given. void operator()(std::vector Names, Signature Sign, Summary Sum) { for (StringRef Name : Names) operator()(Name, Sign, Sum); } } addToFunctionSummaryMap(ACtx, FunctionSummaryMap, DisplayLoadedSummaries); // Below are helpers functions to create the summaries. auto ArgumentCondition = [](ArgNo ArgN, RangeKind Kind, IntRangeVector Ranges) { return std::make_shared(ArgN, Kind, Ranges); }; auto BufferSize = [](auto... Args) { return std::make_shared(Args...); }; struct { auto operator()(RangeKind Kind, IntRangeVector Ranges) { return std::make_shared(Ret, Kind, Ranges); } auto operator()(BinaryOperator::Opcode Op, ArgNo OtherArgN) { return std::make_shared(Ret, Op, OtherArgN); } } ReturnValueCondition; struct { auto operator()(RangeInt b, RangeInt e) { return IntRangeVector{std::pair{b, e}}; } auto operator()(RangeInt b, Optional e) { if (e) return IntRangeVector{std::pair{b, *e}}; return IntRangeVector{}; } auto operator()(std::pair i0, std::pair> i1) { if (i1.second) return IntRangeVector{i0, {i1.first, *(i1.second)}}; return IntRangeVector{i0}; } } Range; auto SingleValue = [](RangeInt v) { return IntRangeVector{std::pair{v, v}}; }; auto LessThanOrEq = BO_LE; auto NotNull = [&](ArgNo ArgN) { return std::make_shared(ArgN); }; Optional FileTy = lookupTy("FILE"); Optional FilePtrTy = getPointerTy(FileTy); Optional FilePtrRestrictTy = getRestrictTy(FilePtrTy); // We are finally ready to define specifications for all supported functions. // // Argument ranges should always cover all variants. If return value // is completely unknown, omit it from the respective range set. // // Every item in the list of range sets represents a particular // execution path the analyzer would need to explore once // the call is modeled - a new program state is constructed // for every range set, and each range line in the range set // corresponds to a specific constraint within this state. // The isascii() family of functions. // The behavior is undefined if the value of the argument is not // representable as unsigned char or is not equal to EOF. See e.g. C99 // 7.4.1.2 The isalpha function (p: 181-182). addToFunctionSummaryMap( "isalnum", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) // Boils down to isupper() or islower() or isdigit(). .Case({ArgumentCondition(0U, WithinRange, {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) // The locale-specific range. // No post-condition. We are completely unaware of // locale-specific return values. .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) .Case( {ArgumentCondition( 0U, OutOfRange, {{'0', '9'}, {'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}), ReturnValueCondition(WithinRange, SingleValue(0))}) .ArgConstraint(ArgumentCondition( 0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}}))); addToFunctionSummaryMap( "isalpha", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, {{'A', 'Z'}, {'a', 'z'}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) // The locale-specific range. .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) .Case({ArgumentCondition( 0U, OutOfRange, {{'A', 'Z'}, {'a', 'z'}, {128, UCharRangeMax}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isascii", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, Range(0, 127)), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isblank", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, {{'\t', '\t'}, {' ', ' '}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, {{'\t', '\t'}, {' ', ' '}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "iscntrl", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, {{0, 32}, {127, 127}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, {{0, 32}, {127, 127}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isdigit", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, Range('0', '9')), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, Range('0', '9')), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isgraph", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, Range(33, 126)), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, Range(33, 126)), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "islower", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) // Is certainly lowercase. .Case({ArgumentCondition(0U, WithinRange, Range('a', 'z')), ReturnValueCondition(OutOfRange, SingleValue(0))}) // Is ascii but not lowercase. .Case({ArgumentCondition(0U, WithinRange, Range(0, 127)), ArgumentCondition(0U, OutOfRange, Range('a', 'z')), ReturnValueCondition(WithinRange, SingleValue(0))}) // The locale-specific range. .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) // Is not an unsigned char. .Case({ArgumentCondition(0U, OutOfRange, Range(0, UCharRangeMax)), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isprint", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, Range(32, 126)), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, Range(32, 126)), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "ispunct", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition( 0U, WithinRange, {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition( 0U, OutOfRange, {{'!', '/'}, {':', '@'}, {'[', '`'}, {'{', '~'}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isspace", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) // Space, '\f', '\n', '\r', '\t', '\v'. .Case({ArgumentCondition(0U, WithinRange, {{9, 13}, {' ', ' '}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) // The locale-specific range. .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) .Case({ArgumentCondition(0U, OutOfRange, {{9, 13}, {' ', ' '}, {128, UCharRangeMax}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isupper", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) // Is certainly uppercase. .Case({ArgumentCondition(0U, WithinRange, Range('A', 'Z')), ReturnValueCondition(OutOfRange, SingleValue(0))}) // The locale-specific range. .Case({ArgumentCondition(0U, WithinRange, {{128, UCharRangeMax}})}) // Other. .Case({ArgumentCondition(0U, OutOfRange, {{'A', 'Z'}, {128, UCharRangeMax}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "isxdigit", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .Case({ArgumentCondition(0U, WithinRange, {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}), ReturnValueCondition(OutOfRange, SingleValue(0))}) .Case({ArgumentCondition(0U, OutOfRange, {{'0', '9'}, {'A', 'F'}, {'a', 'f'}}), ReturnValueCondition(WithinRange, SingleValue(0))})); addToFunctionSummaryMap( "toupper", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition( 0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}}))); addToFunctionSummaryMap( "tolower", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition( 0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}}))); addToFunctionSummaryMap( "toascii", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition( 0U, WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}}))); // The getc() family of functions that returns either a char or an EOF. addToFunctionSummaryMap( {"getc", "fgetc"}, Signature(ArgTypes{FilePtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})})); addToFunctionSummaryMap( "getchar", Signature(ArgTypes{}, RetType{IntTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, {{EOFv, EOFv}, {0, UCharRangeMax}})})); // read()-like functions that never return more than buffer size. auto FreadSummary = Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(0, SizeMax))}) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(3))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1), /*BufSizeMultiplier=*/ArgNo(2))); // size_t fread(void *restrict ptr, size_t size, size_t nitems, // FILE *restrict stream); addToFunctionSummaryMap( "fread", Signature(ArgTypes{VoidPtrRestrictTy, SizeTy, SizeTy, FilePtrRestrictTy}, RetType{SizeTy}), FreadSummary); // size_t fwrite(const void *restrict ptr, size_t size, size_t nitems, // FILE *restrict stream); addToFunctionSummaryMap("fwrite", Signature(ArgTypes{ConstVoidPtrRestrictTy, SizeTy, SizeTy, FilePtrRestrictTy}, RetType{SizeTy}), FreadSummary); Optional Ssize_tTy = lookupTy("ssize_t"); Optional Ssize_tMax = getMaxValue(Ssize_tTy); auto ReadSummary = Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}); // FIXME these are actually defined by POSIX and not by the C standard, we // should handle them together with the rest of the POSIX functions. // ssize_t read(int fildes, void *buf, size_t nbyte); addToFunctionSummaryMap( "read", Signature(ArgTypes{IntTy, VoidPtrTy, SizeTy}, RetType{Ssize_tTy}), ReadSummary); // ssize_t write(int fildes, const void *buf, size_t nbyte); addToFunctionSummaryMap( "write", Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy}, RetType{Ssize_tTy}), ReadSummary); auto GetLineSummary = Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, Range({-1, -1}, {1, Ssize_tMax}))}); QualType CharPtrPtrRestrictTy = getRestrictTy(getPointerTy(CharPtrTy)); // getline()-like functions either fail or read at least the delimiter. // FIXME these are actually defined by POSIX and not by the C standard, we // should handle them together with the rest of the POSIX functions. // ssize_t getline(char **restrict lineptr, size_t *restrict n, // FILE *restrict stream); addToFunctionSummaryMap( "getline", Signature( ArgTypes{CharPtrPtrRestrictTy, SizePtrRestrictTy, FilePtrRestrictTy}, RetType{Ssize_tTy}), GetLineSummary); // ssize_t getdelim(char **restrict lineptr, size_t *restrict n, // int delimiter, FILE *restrict stream); addToFunctionSummaryMap( "getdelim", Signature(ArgTypes{CharPtrPtrRestrictTy, SizePtrRestrictTy, IntTy, FilePtrRestrictTy}, RetType{Ssize_tTy}), GetLineSummary); if (ModelPOSIX) { // long a64l(const char *str64); addToFunctionSummaryMap( "a64l", Signature(ArgTypes{ConstCharPtrTy}, RetType{LongTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // char *l64a(long value); addToFunctionSummaryMap("l64a", Signature(ArgTypes{LongTy}, RetType{CharPtrTy}), Summary(NoEvalCall) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, LongMax)))); const auto ReturnsZeroOrMinusOne = ConstraintSet{ReturnValueCondition(WithinRange, Range(-1, 0))}; const auto ReturnsFileDescriptor = ConstraintSet{ReturnValueCondition(WithinRange, Range(-1, IntMax))}; // int access(const char *pathname, int amode); addToFunctionSummaryMap( "access", Signature(ArgTypes{ConstCharPtrTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int faccessat(int dirfd, const char *pathname, int mode, int flags); addToFunctionSummaryMap( "faccessat", Signature(ArgTypes{IntTy, ConstCharPtrTy, IntTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1)))); // int dup(int fildes); addToFunctionSummaryMap("dup", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, IntMax)))); // int dup2(int fildes1, int filedes2); addToFunctionSummaryMap( "dup2", Signature(ArgTypes{IntTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint( ArgumentCondition(1, WithinRange, Range(0, IntMax)))); // int fdatasync(int fildes); addToFunctionSummaryMap("fdatasync", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, IntMax)))); // int fnmatch(const char *pattern, const char *string, int flags); addToFunctionSummaryMap( "fnmatch", Signature(ArgTypes{ConstCharPtrTy, ConstCharPtrTy, IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int fsync(int fildes); addToFunctionSummaryMap("fsync", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, IntMax)))); Optional Off_tTy = lookupTy("off_t"); // int truncate(const char *path, off_t length); addToFunctionSummaryMap( "truncate", Signature(ArgTypes{ConstCharPtrTy, Off_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int symlink(const char *oldpath, const char *newpath); addToFunctionSummaryMap( "symlink", Signature(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int symlinkat(const char *oldpath, int newdirfd, const char *newpath); addToFunctionSummaryMap( "symlinkat", Signature(ArgTypes{ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(ArgumentCondition(1, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(2)))); // int lockf(int fd, int cmd, off_t len); addToFunctionSummaryMap( "lockf", Signature(ArgTypes{IntTy, IntTy, Off_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); Optional Mode_tTy = lookupTy("mode_t"); // int creat(const char *pathname, mode_t mode); addToFunctionSummaryMap( "creat", Signature(ArgTypes{ConstCharPtrTy, Mode_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(NotNull(ArgNo(0)))); // unsigned int sleep(unsigned int seconds); addToFunctionSummaryMap( "sleep", Signature(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}), Summary(NoEvalCall) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax)))); Optional DirTy = lookupTy("DIR"); Optional DirPtrTy = getPointerTy(DirTy); // int dirfd(DIR *dirp); addToFunctionSummaryMap("dirfd", Signature(ArgTypes{DirPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(NotNull(ArgNo(0)))); // unsigned int alarm(unsigned int seconds); addToFunctionSummaryMap( "alarm", Signature(ArgTypes{UnsignedIntTy}, RetType{UnsignedIntTy}), Summary(NoEvalCall) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, UnsignedIntMax)))); // int closedir(DIR *dir); addToFunctionSummaryMap("closedir", Signature(ArgTypes{DirPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // char *strdup(const char *s); addToFunctionSummaryMap( "strdup", Signature(ArgTypes{ConstCharPtrTy}, RetType{CharPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // char *strndup(const char *s, size_t n); addToFunctionSummaryMap( "strndup", Signature(ArgTypes{ConstCharPtrTy, SizeTy}, RetType{CharPtrTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint( ArgumentCondition(1, WithinRange, Range(0, SizeMax)))); // wchar_t *wcsdup(const wchar_t *s); addToFunctionSummaryMap( "wcsdup", Signature(ArgTypes{ConstWchar_tPtrTy}, RetType{Wchar_tPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int mkstemp(char *template); addToFunctionSummaryMap("mkstemp", Signature(ArgTypes{CharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(NotNull(ArgNo(0)))); // char *mkdtemp(char *template); addToFunctionSummaryMap( "mkdtemp", Signature(ArgTypes{CharPtrTy}, RetType{CharPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // char *getcwd(char *buf, size_t size); addToFunctionSummaryMap( "getcwd", Signature(ArgTypes{CharPtrTy, SizeTy}, RetType{CharPtrTy}), Summary(NoEvalCall) .ArgConstraint( ArgumentCondition(1, WithinRange, Range(0, SizeMax)))); // int mkdir(const char *pathname, mode_t mode); addToFunctionSummaryMap( "mkdir", Signature(ArgTypes{ConstCharPtrTy, Mode_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int mkdirat(int dirfd, const char *pathname, mode_t mode); addToFunctionSummaryMap( "mkdirat", Signature(ArgTypes{IntTy, ConstCharPtrTy, Mode_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1)))); Optional Dev_tTy = lookupTy("dev_t"); // int mknod(const char *pathname, mode_t mode, dev_t dev); addToFunctionSummaryMap( "mknod", Signature(ArgTypes{ConstCharPtrTy, Mode_tTy, Dev_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int mknodat(int dirfd, const char *pathname, mode_t mode, dev_t dev); addToFunctionSummaryMap( "mknodat", Signature(ArgTypes{IntTy, ConstCharPtrTy, Mode_tTy, Dev_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1)))); // int chmod(const char *path, mode_t mode); addToFunctionSummaryMap( "chmod", Signature(ArgTypes{ConstCharPtrTy, Mode_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int fchmodat(int dirfd, const char *pathname, mode_t mode, int flags); addToFunctionSummaryMap( "fchmodat", Signature(ArgTypes{IntTy, ConstCharPtrTy, Mode_tTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1)))); // int fchmod(int fildes, mode_t mode); addToFunctionSummaryMap( "fchmod", Signature(ArgTypes{IntTy, Mode_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); Optional Uid_tTy = lookupTy("uid_t"); Optional Gid_tTy = lookupTy("gid_t"); // int fchownat(int dirfd, const char *pathname, uid_t owner, gid_t group, // int flags); addToFunctionSummaryMap( "fchownat", Signature(ArgTypes{IntTy, ConstCharPtrTy, Uid_tTy, Gid_tTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1)))); // int chown(const char *path, uid_t owner, gid_t group); addToFunctionSummaryMap( "chown", Signature(ArgTypes{ConstCharPtrTy, Uid_tTy, Gid_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int lchown(const char *path, uid_t owner, gid_t group); addToFunctionSummaryMap( "lchown", Signature(ArgTypes{ConstCharPtrTy, Uid_tTy, Gid_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int fchown(int fildes, uid_t owner, gid_t group); addToFunctionSummaryMap( "fchown", Signature(ArgTypes{IntTy, Uid_tTy, Gid_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // int rmdir(const char *pathname); addToFunctionSummaryMap("rmdir", Signature(ArgTypes{ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int chdir(const char *path); addToFunctionSummaryMap("chdir", Signature(ArgTypes{ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int link(const char *oldpath, const char *newpath); addToFunctionSummaryMap( "link", Signature(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int linkat(int fd1, const char *path1, int fd2, const char *path2, // int flag); addToFunctionSummaryMap( "linkat", Signature(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(ArgumentCondition(2, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(3)))); // int unlink(const char *pathname); addToFunctionSummaryMap("unlink", Signature(ArgTypes{ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int unlinkat(int fd, const char *path, int flag); addToFunctionSummaryMap( "unlinkat", Signature(ArgTypes{IntTy, ConstCharPtrTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1)))); Optional StructStatTy = lookupTy("stat"); Optional StructStatPtrTy = getPointerTy(StructStatTy); Optional StructStatPtrRestrictTy = getRestrictTy(StructStatPtrTy); // int fstat(int fd, struct stat *statbuf); addToFunctionSummaryMap( "fstat", Signature(ArgTypes{IntTy, StructStatPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1)))); // int stat(const char *restrict path, struct stat *restrict buf); addToFunctionSummaryMap( "stat", Signature(ArgTypes{ConstCharPtrRestrictTy, StructStatPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int lstat(const char *restrict path, struct stat *restrict buf); addToFunctionSummaryMap( "lstat", Signature(ArgTypes{ConstCharPtrRestrictTy, StructStatPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int fstatat(int fd, const char *restrict path, // struct stat *restrict buf, int flag); addToFunctionSummaryMap( "fstatat", Signature(ArgTypes{IntTy, ConstCharPtrRestrictTy, StructStatPtrRestrictTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(NotNull(ArgNo(2)))); // DIR *opendir(const char *name); addToFunctionSummaryMap( "opendir", Signature(ArgTypes{ConstCharPtrTy}, RetType{DirPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // DIR *fdopendir(int fd); addToFunctionSummaryMap("fdopendir", Signature(ArgTypes{IntTy}, RetType{DirPtrTy}), Summary(NoEvalCall) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, IntMax)))); // int isatty(int fildes); addToFunctionSummaryMap( "isatty", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, Range(0, 1))}) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // FILE *popen(const char *command, const char *type); addToFunctionSummaryMap( "popen", Signature(ArgTypes{ConstCharPtrTy, ConstCharPtrTy}, RetType{FilePtrTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int pclose(FILE *stream); addToFunctionSummaryMap( "pclose", Signature(ArgTypes{FilePtrTy}, RetType{IntTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int close(int fildes); addToFunctionSummaryMap("close", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(-1, IntMax)))); // long fpathconf(int fildes, int name); addToFunctionSummaryMap("fpathconf", Signature(ArgTypes{IntTy, IntTy}, RetType{LongTy}), Summary(NoEvalCall) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, IntMax)))); // long pathconf(const char *path, int name); addToFunctionSummaryMap( "pathconf", Signature(ArgTypes{ConstCharPtrTy, IntTy}, RetType{LongTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // FILE *fdopen(int fd, const char *mode); addToFunctionSummaryMap( "fdopen", Signature(ArgTypes{IntTy, ConstCharPtrTy}, RetType{FilePtrTy}), Summary(NoEvalCall) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1)))); // void rewinddir(DIR *dir); addToFunctionSummaryMap( "rewinddir", Signature(ArgTypes{DirPtrTy}, RetType{VoidTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // void seekdir(DIR *dirp, long loc); addToFunctionSummaryMap( "seekdir", Signature(ArgTypes{DirPtrTy, LongTy}, RetType{VoidTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int rand_r(unsigned int *seedp); addToFunctionSummaryMap( "rand_r", Signature(ArgTypes{UnsignedIntPtrTy}, RetType{IntTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int fileno(FILE *stream); addToFunctionSummaryMap("fileno", Signature(ArgTypes{FilePtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(NotNull(ArgNo(0)))); // int fseeko(FILE *stream, off_t offset, int whence); addToFunctionSummaryMap( "fseeko", Signature(ArgTypes{FilePtrTy, Off_tTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // off_t ftello(FILE *stream); addToFunctionSummaryMap( "ftello", Signature(ArgTypes{FilePtrTy}, RetType{Off_tTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // void *mmap(void *addr, size_t length, int prot, int flags, int fd, // off_t offset); addToFunctionSummaryMap( "mmap", Signature(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, Off_tTy}, RetType{VoidPtrTy}), Summary(NoEvalCall) .ArgConstraint(ArgumentCondition(1, WithinRange, Range(1, SizeMax))) .ArgConstraint( ArgumentCondition(4, WithinRange, Range(-1, IntMax)))); Optional Off64_tTy = lookupTy("off64_t"); // void *mmap64(void *addr, size_t length, int prot, int flags, int fd, // off64_t offset); addToFunctionSummaryMap( "mmap64", Signature(ArgTypes{VoidPtrTy, SizeTy, IntTy, IntTy, IntTy, Off64_tTy}, RetType{VoidPtrTy}), Summary(NoEvalCall) .ArgConstraint(ArgumentCondition(1, WithinRange, Range(1, SizeMax))) .ArgConstraint( ArgumentCondition(4, WithinRange, Range(-1, IntMax)))); // int pipe(int fildes[2]); addToFunctionSummaryMap("pipe", Signature(ArgTypes{IntPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // off_t lseek(int fildes, off_t offset, int whence); addToFunctionSummaryMap( "lseek", Signature(ArgTypes{IntTy, Off_tTy, IntTy}, RetType{Off_tTy}), Summary(NoEvalCall) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // ssize_t readlink(const char *restrict path, char *restrict buf, // size_t bufsize); addToFunctionSummaryMap( "readlink", Signature(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy}, RetType{Ssize_tTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2))) .ArgConstraint( ArgumentCondition(2, WithinRange, Range(0, SizeMax)))); // ssize_t readlinkat(int fd, const char *restrict path, // char *restrict buf, size_t bufsize); addToFunctionSummaryMap( "readlinkat", Signature( ArgTypes{IntTy, ConstCharPtrRestrictTy, CharPtrRestrictTy, SizeTy}, RetType{Ssize_tTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(3)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(NotNull(ArgNo(2))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(2), /*BufSize=*/ArgNo(3))) .ArgConstraint( ArgumentCondition(3, WithinRange, Range(0, SizeMax)))); // int renameat(int olddirfd, const char *oldpath, int newdirfd, const char // *newpath); addToFunctionSummaryMap( "renameat", Signature(ArgTypes{IntTy, ConstCharPtrTy, IntTy, ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(NotNull(ArgNo(3)))); // char *realpath(const char *restrict file_name, // char *restrict resolved_name); addToFunctionSummaryMap( "realpath", Signature(ArgTypes{ConstCharPtrRestrictTy, CharPtrRestrictTy}, RetType{CharPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); QualType CharPtrConstPtr = getPointerTy(getConstTy(CharPtrTy)); // int execv(const char *path, char *const argv[]); addToFunctionSummaryMap( "execv", Signature(ArgTypes{ConstCharPtrTy, CharPtrConstPtr}, RetType{IntTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, SingleValue(-1))}) .ArgConstraint(NotNull(ArgNo(0)))); // int execvp(const char *file, char *const argv[]); addToFunctionSummaryMap( "execvp", Signature(ArgTypes{ConstCharPtrTy, CharPtrConstPtr}, RetType{IntTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, SingleValue(-1))}) .ArgConstraint(NotNull(ArgNo(0)))); // int getopt(int argc, char * const argv[], const char *optstring); addToFunctionSummaryMap( "getopt", Signature(ArgTypes{IntTy, CharPtrConstPtr, ConstCharPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, Range(-1, UCharRangeMax))}) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(NotNull(ArgNo(2)))); Optional StructSockaddrTy = lookupTy("sockaddr"); Optional StructSockaddrPtrTy = getPointerTy(StructSockaddrTy); Optional ConstStructSockaddrPtrTy = getPointerTy(getConstTy(StructSockaddrTy)); Optional StructSockaddrPtrRestrictTy = getRestrictTy(StructSockaddrPtrTy); Optional ConstStructSockaddrPtrRestrictTy = getRestrictTy(ConstStructSockaddrPtrTy); Optional Socklen_tTy = lookupTy("socklen_t"); Optional Socklen_tPtrTy = getPointerTy(Socklen_tTy); Optional Socklen_tPtrRestrictTy = getRestrictTy(Socklen_tPtrTy); Optional Socklen_tMax = getMaxValue(Socklen_tTy); // In 'socket.h' of some libc implementations with C99, sockaddr parameter // is a transparent union of the underlying sockaddr_ family of pointers // instead of being a pointer to struct sockaddr. In these cases, the // standardized signature will not match, thus we try to match with another // signature that has the joker Irrelevant type. We also remove those // constraints which require pointer types for the sockaddr param. auto Accept = Summary(NoEvalCall) .Case(ReturnsFileDescriptor) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))); if (!addToFunctionSummaryMap( "accept", // int accept(int socket, struct sockaddr *restrict address, // socklen_t *restrict address_len); Signature(ArgTypes{IntTy, StructSockaddrPtrRestrictTy, Socklen_tPtrRestrictTy}, RetType{IntTy}), Accept)) addToFunctionSummaryMap( "accept", Signature(ArgTypes{IntTy, Irrelevant, Socklen_tPtrRestrictTy}, RetType{IntTy}), Accept); // int bind(int socket, const struct sockaddr *address, socklen_t // address_len); if (!addToFunctionSummaryMap( "bind", Signature(ArgTypes{IntTy, ConstStructSockaddrPtrTy, Socklen_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint( BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2))) .ArgConstraint( ArgumentCondition(2, WithinRange, Range(0, Socklen_tMax))))) // Do not add constraints on sockaddr. addToFunctionSummaryMap( "bind", Signature(ArgTypes{IntTy, Irrelevant, Socklen_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint( ArgumentCondition(2, WithinRange, Range(0, Socklen_tMax)))); // int getpeername(int socket, struct sockaddr *restrict address, // socklen_t *restrict address_len); if (!addToFunctionSummaryMap( "getpeername", Signature(ArgTypes{IntTy, StructSockaddrPtrRestrictTy, Socklen_tPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(NotNull(ArgNo(2))))) addToFunctionSummaryMap( "getpeername", Signature(ArgTypes{IntTy, Irrelevant, Socklen_tPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // int getsockname(int socket, struct sockaddr *restrict address, // socklen_t *restrict address_len); if (!addToFunctionSummaryMap( "getsockname", Signature(ArgTypes{IntTy, StructSockaddrPtrRestrictTy, Socklen_tPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(NotNull(ArgNo(2))))) addToFunctionSummaryMap( "getsockname", Signature(ArgTypes{IntTy, Irrelevant, Socklen_tPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // int connect(int socket, const struct sockaddr *address, socklen_t // address_len); if (!addToFunctionSummaryMap( "connect", Signature(ArgTypes{IntTy, ConstStructSockaddrPtrTy, Socklen_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(NotNull(ArgNo(1))))) addToFunctionSummaryMap( "connect", Signature(ArgTypes{IntTy, Irrelevant, Socklen_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); auto Recvfrom = Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2))); if (!addToFunctionSummaryMap( "recvfrom", // ssize_t recvfrom(int socket, void *restrict buffer, // size_t length, // int flags, struct sockaddr *restrict address, // socklen_t *restrict address_len); Signature(ArgTypes{IntTy, VoidPtrRestrictTy, SizeTy, IntTy, StructSockaddrPtrRestrictTy, Socklen_tPtrRestrictTy}, RetType{Ssize_tTy}), Recvfrom)) addToFunctionSummaryMap( "recvfrom", Signature(ArgTypes{IntTy, VoidPtrRestrictTy, SizeTy, IntTy, Irrelevant, Socklen_tPtrRestrictTy}, RetType{Ssize_tTy}), Recvfrom); auto Sendto = Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2))); if (!addToFunctionSummaryMap( "sendto", // ssize_t sendto(int socket, const void *message, size_t length, // int flags, const struct sockaddr *dest_addr, // socklen_t dest_len); Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy, ConstStructSockaddrPtrTy, Socklen_tTy}, RetType{Ssize_tTy}), Sendto)) addToFunctionSummaryMap( "sendto", Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy, Irrelevant, Socklen_tTy}, RetType{Ssize_tTy}), Sendto); // int listen(int sockfd, int backlog); addToFunctionSummaryMap("listen", Signature(ArgTypes{IntTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(ArgumentCondition( 0, WithinRange, Range(0, IntMax)))); // ssize_t recv(int sockfd, void *buf, size_t len, int flags); addToFunctionSummaryMap( "recv", Signature(ArgTypes{IntTy, VoidPtrTy, SizeTy, IntTy}, RetType{Ssize_tTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2)))); Optional StructMsghdrTy = lookupTy("msghdr"); Optional StructMsghdrPtrTy = getPointerTy(StructMsghdrTy); Optional ConstStructMsghdrPtrTy = getPointerTy(getConstTy(StructMsghdrTy)); // ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags); addToFunctionSummaryMap( "recvmsg", Signature(ArgTypes{IntTy, StructMsghdrPtrTy, IntTy}, RetType{Ssize_tTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags); addToFunctionSummaryMap( "sendmsg", Signature(ArgTypes{IntTy, ConstStructMsghdrPtrTy, IntTy}, RetType{Ssize_tTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // int setsockopt(int socket, int level, int option_name, // const void *option_value, socklen_t option_len); addToFunctionSummaryMap( "setsockopt", Signature(ArgTypes{IntTy, IntTy, IntTy, ConstVoidPtrTy, Socklen_tTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(3))) .ArgConstraint( BufferSize(/*Buffer=*/ArgNo(3), /*BufSize=*/ArgNo(4))) .ArgConstraint( ArgumentCondition(4, WithinRange, Range(0, Socklen_tMax)))); // int getsockopt(int socket, int level, int option_name, // void *restrict option_value, // socklen_t *restrict option_len); addToFunctionSummaryMap( "getsockopt", Signature(ArgTypes{IntTy, IntTy, IntTy, VoidPtrRestrictTy, Socklen_tPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(3))) .ArgConstraint(NotNull(ArgNo(4)))); // ssize_t send(int sockfd, const void *buf, size_t len, int flags); addToFunctionSummaryMap( "send", Signature(ArgTypes{IntTy, ConstVoidPtrTy, SizeTy, IntTy}, RetType{Ssize_tTy}), Summary(NoEvalCall) .Case({ReturnValueCondition(LessThanOrEq, ArgNo(2)), ReturnValueCondition(WithinRange, Range(-1, Ssize_tMax))}) .ArgConstraint(ArgumentCondition(0, WithinRange, Range(0, IntMax))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), /*BufSize=*/ArgNo(2)))); // int socketpair(int domain, int type, int protocol, int sv[2]); addToFunctionSummaryMap( "socketpair", Signature(ArgTypes{IntTy, IntTy, IntTy, IntPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(3)))); // int getnameinfo(const struct sockaddr *restrict sa, socklen_t salen, // char *restrict node, socklen_t nodelen, // char *restrict service, // socklen_t servicelen, int flags); // // This is defined in netdb.h. And contrary to 'socket.h', the sockaddr // parameter is never handled as a transparent union in netdb.h addToFunctionSummaryMap( "getnameinfo", Signature(ArgTypes{ConstStructSockaddrPtrRestrictTy, Socklen_tTy, CharPtrRestrictTy, Socklen_tTy, CharPtrRestrictTy, Socklen_tTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .ArgConstraint( BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1))) .ArgConstraint( ArgumentCondition(1, WithinRange, Range(0, Socklen_tMax))) .ArgConstraint( BufferSize(/*Buffer=*/ArgNo(2), /*BufSize=*/ArgNo(3))) .ArgConstraint( ArgumentCondition(3, WithinRange, Range(0, Socklen_tMax))) .ArgConstraint( BufferSize(/*Buffer=*/ArgNo(4), /*BufSize=*/ArgNo(5))) .ArgConstraint( ArgumentCondition(5, WithinRange, Range(0, Socklen_tMax)))); Optional StructUtimbufTy = lookupTy("utimbuf"); Optional StructUtimbufPtrTy = getPointerTy(StructUtimbufTy); // int utime(const char *filename, struct utimbuf *buf); addToFunctionSummaryMap( "utime", Signature(ArgTypes{ConstCharPtrTy, StructUtimbufPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); Optional StructTimespecTy = lookupTy("timespec"); Optional StructTimespecPtrTy = getPointerTy(StructTimespecTy); Optional ConstStructTimespecPtrTy = getPointerTy(getConstTy(StructTimespecTy)); // int futimens(int fd, const struct timespec times[2]); addToFunctionSummaryMap( "futimens", Signature(ArgTypes{IntTy, ConstStructTimespecPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint( ArgumentCondition(0, WithinRange, Range(0, IntMax)))); // int utimensat(int dirfd, const char *pathname, // const struct timespec times[2], int flags); addToFunctionSummaryMap("utimensat", Signature(ArgTypes{IntTy, ConstCharPtrTy, ConstStructTimespecPtrTy, IntTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1)))); Optional StructTimevalTy = lookupTy("timeval"); Optional ConstStructTimevalPtrTy = getPointerTy(getConstTy(StructTimevalTy)); // int utimes(const char *filename, const struct timeval times[2]); addToFunctionSummaryMap( "utimes", Signature(ArgTypes{ConstCharPtrTy, ConstStructTimevalPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); // int nanosleep(const struct timespec *rqtp, struct timespec *rmtp); addToFunctionSummaryMap( "nanosleep", Signature(ArgTypes{ConstStructTimespecPtrTy, StructTimespecPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(0)))); Optional Time_tTy = lookupTy("time_t"); Optional ConstTime_tPtrTy = getPointerTy(getConstTy(Time_tTy)); Optional ConstTime_tPtrRestrictTy = getRestrictTy(ConstTime_tPtrTy); Optional StructTmTy = lookupTy("tm"); Optional StructTmPtrTy = getPointerTy(StructTmTy); Optional StructTmPtrRestrictTy = getRestrictTy(StructTmPtrTy); Optional ConstStructTmPtrTy = getPointerTy(getConstTy(StructTmTy)); Optional ConstStructTmPtrRestrictTy = getRestrictTy(ConstStructTmPtrTy); // struct tm * localtime(const time_t *tp); addToFunctionSummaryMap( "localtime", Signature(ArgTypes{ConstTime_tPtrTy}, RetType{StructTmPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // struct tm *localtime_r(const time_t *restrict timer, // struct tm *restrict result); addToFunctionSummaryMap( "localtime_r", Signature(ArgTypes{ConstTime_tPtrRestrictTy, StructTmPtrRestrictTy}, RetType{StructTmPtrTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // char *asctime_r(const struct tm *restrict tm, char *restrict buf); addToFunctionSummaryMap( "asctime_r", Signature(ArgTypes{ConstStructTmPtrRestrictTy, CharPtrRestrictTy}, RetType{CharPtrTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(1), /*MinBufSize=*/BVF.getValue(26, IntTy)))); // char *ctime_r(const time_t *timep, char *buf); addToFunctionSummaryMap( "ctime_r", Signature(ArgTypes{ConstTime_tPtrTy, CharPtrTy}, RetType{CharPtrTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1))) .ArgConstraint(BufferSize( /*Buffer=*/ArgNo(1), /*MinBufSize=*/BVF.getValue(26, IntTy)))); // struct tm *gmtime_r(const time_t *restrict timer, // struct tm *restrict result); addToFunctionSummaryMap( "gmtime_r", Signature(ArgTypes{ConstTime_tPtrRestrictTy, StructTmPtrRestrictTy}, RetType{StructTmPtrTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // struct tm * gmtime(const time_t *tp); addToFunctionSummaryMap( "gmtime", Signature(ArgTypes{ConstTime_tPtrTy}, RetType{StructTmPtrTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); Optional Clockid_tTy = lookupTy("clockid_t"); // int clock_gettime(clockid_t clock_id, struct timespec *tp); addToFunctionSummaryMap( "clock_gettime", Signature(ArgTypes{Clockid_tTy, StructTimespecPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1)))); Optional StructItimervalTy = lookupTy("itimerval"); Optional StructItimervalPtrTy = getPointerTy(StructItimervalTy); // int getitimer(int which, struct itimerval *curr_value); addToFunctionSummaryMap( "getitimer", Signature(ArgTypes{IntTy, StructItimervalPtrTy}, RetType{IntTy}), Summary(NoEvalCall) .Case(ReturnsZeroOrMinusOne) .ArgConstraint(NotNull(ArgNo(1)))); Optional Pthread_cond_tTy = lookupTy("pthread_cond_t"); Optional Pthread_cond_tPtrTy = getPointerTy(Pthread_cond_tTy); Optional Pthread_tTy = lookupTy("pthread_t"); Optional Pthread_tPtrTy = getPointerTy(Pthread_tTy); Optional Pthread_tPtrRestrictTy = getRestrictTy(Pthread_tPtrTy); Optional Pthread_mutex_tTy = lookupTy("pthread_mutex_t"); Optional Pthread_mutex_tPtrTy = getPointerTy(Pthread_mutex_tTy); Optional Pthread_mutex_tPtrRestrictTy = getRestrictTy(Pthread_mutex_tPtrTy); Optional Pthread_attr_tTy = lookupTy("pthread_attr_t"); Optional Pthread_attr_tPtrTy = getPointerTy(Pthread_attr_tTy); Optional ConstPthread_attr_tPtrTy = getPointerTy(getConstTy(Pthread_attr_tTy)); Optional ConstPthread_attr_tPtrRestrictTy = getRestrictTy(ConstPthread_attr_tPtrTy); Optional Pthread_mutexattr_tTy = lookupTy("pthread_mutexattr_t"); Optional ConstPthread_mutexattr_tPtrTy = getPointerTy(getConstTy(Pthread_mutexattr_tTy)); Optional ConstPthread_mutexattr_tPtrRestrictTy = getRestrictTy(ConstPthread_mutexattr_tPtrTy); QualType PthreadStartRoutineTy = getPointerTy( ACtx.getFunctionType(/*ResultTy=*/VoidPtrTy, /*Args=*/VoidPtrTy, FunctionProtoType::ExtProtoInfo())); // int pthread_cond_signal(pthread_cond_t *cond); // int pthread_cond_broadcast(pthread_cond_t *cond); addToFunctionSummaryMap( {"pthread_cond_signal", "pthread_cond_broadcast"}, Signature(ArgTypes{Pthread_cond_tPtrTy}, RetType{IntTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int pthread_create(pthread_t *restrict thread, // const pthread_attr_t *restrict attr, // void *(*start_routine)(void*), void *restrict arg); addToFunctionSummaryMap( "pthread_create", Signature(ArgTypes{Pthread_tPtrRestrictTy, ConstPthread_attr_tPtrRestrictTy, PthreadStartRoutineTy, VoidPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(2)))); // int pthread_attr_destroy(pthread_attr_t *attr); // int pthread_attr_init(pthread_attr_t *attr); addToFunctionSummaryMap( {"pthread_attr_destroy", "pthread_attr_init"}, Signature(ArgTypes{Pthread_attr_tPtrTy}, RetType{IntTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int pthread_attr_getstacksize(const pthread_attr_t *restrict attr, // size_t *restrict stacksize); // int pthread_attr_getguardsize(const pthread_attr_t *restrict attr, // size_t *restrict guardsize); addToFunctionSummaryMap( {"pthread_attr_getstacksize", "pthread_attr_getguardsize"}, Signature(ArgTypes{ConstPthread_attr_tPtrRestrictTy, SizePtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); // int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize); // int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize); addToFunctionSummaryMap( {"pthread_attr_setstacksize", "pthread_attr_setguardsize"}, Signature(ArgTypes{Pthread_attr_tPtrTy, SizeTy}, RetType{IntTy}), Summary(NoEvalCall) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint( ArgumentCondition(1, WithinRange, Range(0, SizeMax)))); // int pthread_mutex_init(pthread_mutex_t *restrict mutex, const // pthread_mutexattr_t *restrict attr); addToFunctionSummaryMap( "pthread_mutex_init", Signature(ArgTypes{Pthread_mutex_tPtrRestrictTy, ConstPthread_mutexattr_tPtrRestrictTy}, RetType{IntTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); // int pthread_mutex_destroy(pthread_mutex_t *mutex); // int pthread_mutex_lock(pthread_mutex_t *mutex); // int pthread_mutex_trylock(pthread_mutex_t *mutex); // int pthread_mutex_unlock(pthread_mutex_t *mutex); addToFunctionSummaryMap( {"pthread_mutex_destroy", "pthread_mutex_lock", "pthread_mutex_trylock", "pthread_mutex_unlock"}, Signature(ArgTypes{Pthread_mutex_tPtrTy}, RetType{IntTy}), Summary(NoEvalCall).ArgConstraint(NotNull(ArgNo(0)))); } // Functions for testing. if (ChecksEnabled[CK_StdCLibraryFunctionsTesterChecker]) { addToFunctionSummaryMap( "__not_null", Signature(ArgTypes{IntPtrTy}, RetType{IntTy}), Summary(EvalCallAsPure).ArgConstraint(NotNull(ArgNo(0)))); // Test range values. addToFunctionSummaryMap( "__single_val_1", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))); addToFunctionSummaryMap( "__range_1_2", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition(0U, WithinRange, Range(1, 2)))); addToFunctionSummaryMap("__range_1_2__4_5", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition( 0U, WithinRange, Range({1, 2}, {4, 5})))); // Test range kind. addToFunctionSummaryMap( "__within", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1)))); addToFunctionSummaryMap( "__out_of", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1)))); addToFunctionSummaryMap( "__two_constrained_args", Signature(ArgTypes{IntTy, IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition(0U, WithinRange, SingleValue(1))) .ArgConstraint(ArgumentCondition(1U, WithinRange, SingleValue(1)))); addToFunctionSummaryMap( "__arg_constrained_twice", Signature(ArgTypes{IntTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(1))) .ArgConstraint(ArgumentCondition(0U, OutOfRange, SingleValue(2)))); addToFunctionSummaryMap( "__defaultparam", Signature(ArgTypes{Irrelevant, IntTy}, RetType{IntTy}), Summary(EvalCallAsPure).ArgConstraint(NotNull(ArgNo(0)))); addToFunctionSummaryMap( "__variadic", Signature(ArgTypes{VoidPtrTy, ConstCharPtrTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(NotNull(ArgNo(0))) .ArgConstraint(NotNull(ArgNo(1)))); addToFunctionSummaryMap( "__buf_size_arg_constraint", Signature(ArgTypes{ConstVoidPtrTy, SizeTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint( BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1)))); addToFunctionSummaryMap( "__buf_size_arg_constraint_mul", Signature(ArgTypes{ConstVoidPtrTy, SizeTy, SizeTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/ArgNo(1), /*BufSizeMultiplier=*/ArgNo(2)))); addToFunctionSummaryMap( "__buf_size_arg_constraint_concrete", Signature(ArgTypes{ConstVoidPtrTy}, RetType{IntTy}), Summary(EvalCallAsPure) .ArgConstraint(BufferSize(/*Buffer=*/ArgNo(0), /*BufSize=*/BVF.getValue(10, IntTy)))); addToFunctionSummaryMap( {"__test_restrict_param_0", "__test_restrict_param_1", "__test_restrict_param_2"}, Signature(ArgTypes{VoidPtrRestrictTy}, RetType{VoidTy}), Summary(EvalCallAsPure)); } SummariesInitialized = true; } void ento::registerStdCLibraryFunctionsChecker(CheckerManager &mgr) { auto *Checker = mgr.registerChecker(); Checker->DisplayLoadedSummaries = mgr.getAnalyzerOptions().getCheckerBooleanOption( Checker, "DisplayLoadedSummaries"); Checker->ModelPOSIX = mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker, "ModelPOSIX"); } bool ento::shouldRegisterStdCLibraryFunctionsChecker( const CheckerManager &mgr) { return true; } #define REGISTER_CHECKER(name) \ void ento::register##name(CheckerManager &mgr) { \ StdLibraryFunctionsChecker *checker = \ mgr.getChecker(); \ checker->ChecksEnabled[StdLibraryFunctionsChecker::CK_##name] = true; \ checker->CheckNames[StdLibraryFunctionsChecker::CK_##name] = \ mgr.getCurrentCheckerName(); \ } \ \ bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } REGISTER_CHECKER(StdCLibraryFunctionArgsChecker) REGISTER_CHECKER(StdCLibraryFunctionsTesterChecker)