/* $NetBSD: gpt_uuid.c,v 1.24 2024/12/18 20:56:40 andvar Exp $ */ /*- * Copyright (c) 2014 The NetBSD Foundation, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if HAVE_NBTOOL_CONFIG_H #include "nbtool_config.h" #endif #include #ifdef __RCSID __RCSID("$NetBSD: gpt_uuid.c,v 1.24 2024/12/18 20:56:40 andvar Exp $"); #endif #include #include #include #include #include "map.h" #include "gpt.h" #include "gpt_private.h" #if defined(HAVE_SYS_ENDIAN_H) || ! defined(HAVE_NBTOOL_CONFIG_H) #include #endif const gpt_uuid_t gpt_uuid_nil; struct dce_uuid { uint32_t time_low; uint16_t time_mid; uint16_t time_hi_and_version; uint8_t clock_seq_hi_and_reserved; uint8_t clock_seq_low; uint8_t node[6]; }; static const struct { struct dce_uuid u; const char *n; const char *d; } gpt_nv[] = { /* Must match the gpt_type_t enum in gpt_uuid.h */ { GPT_ENT_TYPE_APPLE_HFS, "apple", "Apple HFS" }, { GPT_ENT_TYPE_APPLE_UFS, "apple-ufs", "Apple UFS" }, { GPT_ENT_TYPE_BIOS, "bios", "BIOS Boot" }, { GPT_ENT_TYPE_EFI, "efi", "EFI System" }, { GPT_ENT_TYPE_FREEBSD, "fbsd-legacy", "FreeBSD legacy" }, { GPT_ENT_TYPE_FREEBSD_SWAP, "fbsd-swap", "FreeBSD swap" }, { GPT_ENT_TYPE_FREEBSD_UFS, "fbsd-ufs", "FreeBSD UFS/UFS2" }, { GPT_ENT_TYPE_FREEBSD_VINUM, "fbsd-vinum", "FreeBSD vinum" }, { GPT_ENT_TYPE_FREEBSD_ZFS, "zfs", "ZFS" }, { GPT_ENT_TYPE_LINUX_DATA, "linux-data", "Linux data" }, { GPT_ENT_TYPE_LINUX_RAID, "linux-raid", "Linux RAID" }, { GPT_ENT_TYPE_LINUX_SWAP, "linux-swap", "Linux swap" }, { GPT_ENT_TYPE_LINUX_LVM, "linux-lvm", "Linux LVM" }, { GPT_ENT_TYPE_MS_BASIC_DATA, "windows", "Windows basic data" }, { GPT_ENT_TYPE_MS_RESERVED, "windows-reserved", "Windows reserved" }, { GPT_ENT_TYPE_MS_RECOVERY, "windows-recovery", "Windows recovery" }, { GPT_ENT_TYPE_NETBSD_CCD, "ccd", "NetBSD ccd component" }, { GPT_ENT_TYPE_NETBSD_CGD, "cgd", "NetBSD Cryptographic Disk" }, { GPT_ENT_TYPE_NETBSD_FFS, "ffs", "NetBSD FFSv1/FFSv2" }, { GPT_ENT_TYPE_NETBSD_LFS, "lfs", "NetBSD LFS" }, { GPT_ENT_TYPE_NETBSD_RAIDFRAME, "raid", "NetBSD RAIDFrame component" }, { GPT_ENT_TYPE_NETBSD_SWAP, "swap", "NetBSD swap" }, { GPT_ENT_TYPE_OPENBSD_DATA, "obsd", "OpenBSD data" }, { GPT_ENT_TYPE_VMWARE_VMKCORE, "vmcore", "VMware VMkernel core dump" }, { GPT_ENT_TYPE_VMWARE_VMFS, "vmfs", "VMware VMFS" }, { GPT_ENT_TYPE_VMWARE_RESERVED, "vmresered", "VMware reserved" }, }; static void gpt_uuid_to_dce(const gpt_uuid_t buf, struct dce_uuid *uuid) { const uint8_t *p = buf; size_t i; uuid->time_low = le32dec(p); uuid->time_mid = le16dec(p + 4); uuid->time_hi_and_version = le16dec(p + 6); uuid->clock_seq_hi_and_reserved = p[8]; uuid->clock_seq_low = p[9]; for (i = 0; i < sizeof(uuid->node); i++) uuid->node[i] = p[10 + i]; } static void gpt_dce_to_uuid(const struct dce_uuid *uuid, uint8_t *buf) { uint8_t *p = buf; size_t i; le32enc(p, uuid->time_low); le16enc(p + 4, uuid->time_mid); le16enc(p + 6, uuid->time_hi_and_version); p[8] = uuid->clock_seq_hi_and_reserved; p[9] = uuid->clock_seq_low; for (i = 0; i < sizeof(uuid->node); i++) p[10 + i] = uuid->node[i]; } static int gpt_uuid_numeric(char *buf, size_t bufsiz, const struct dce_uuid *u) { return snprintf(buf, bufsiz, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", u->time_low, u->time_mid, u->time_hi_and_version, u->clock_seq_hi_and_reserved, u->clock_seq_low, u->node[0], u->node[1], u->node[2], u->node[3], u->node[4], u->node[5]); } static int gpt_uuid_symbolic(char *buf, size_t bufsiz, const struct dce_uuid *u) { size_t i; for (i = 0; i < __arraycount(gpt_nv); i++) if (memcmp(&gpt_nv[i].u, u, sizeof(*u)) == 0) return (int)strlcpy(buf, gpt_nv[i].n, bufsiz); return -1; } static int gpt_uuid_descriptive(char *buf, size_t bufsiz, const struct dce_uuid *u) { size_t i; for (i = 0; i < __arraycount(gpt_nv); i++) if (memcmp(&gpt_nv[i].u, u, sizeof(*u)) == 0) return (int)strlcpy(buf, gpt_nv[i].d, bufsiz); return -1; } int gpt_uuid_snprintf(char *buf, size_t bufsiz, const char *fmt, const gpt_uuid_t uu) { struct dce_uuid u; gpt_uuid_to_dce(uu, &u); if (fmt[1] == 's') { int r; if ((r = gpt_uuid_symbolic(buf, bufsiz, &u)) != -1) return r; } if (fmt[1] == 'l') { int r; if ((r = gpt_uuid_descriptive(buf, bufsiz, &u)) != -1) return r; } return gpt_uuid_numeric(buf, bufsiz, &u); } static int gpt_uuid_parse_numeric(const char *s, struct dce_uuid *u) { int n; if (s == NULL || *s == '\0') { memset(u, 0, sizeof(*u)); return 0; } n = sscanf(s, "%8x-%4hx-%4hx-%2hhx%2hhx-%2hhx%2hhx%2hhx%2hhx%2hhx%2hhx", &u->time_low, &u->time_mid, &u->time_hi_and_version, &u->clock_seq_hi_and_reserved, &u->clock_seq_low, &u->node[0], &u->node[1], &u->node[2], &u->node[3], &u->node[4], &u->node[5]); /* Make sure we have all conversions. */ if (n != 11) return -1; /* We have a successful scan. Check semantics... */ n = u->clock_seq_hi_and_reserved; if ((n & 0x80) != 0x00 && /* variant 0? */ (n & 0xc0) != 0x80 && /* variant 1? */ (n & 0xe0) != 0xc0) /* variant 2? */ return -1; return 0; } static int gpt_uuid_parse_symbolic(const char *s, struct dce_uuid *u) { size_t i; for (i = 0; i < __arraycount(gpt_nv); i++) if (strcmp(gpt_nv[i].n, s) == 0) { *u = gpt_nv[i].u; return 0; } return -1; } int gpt_uuid_parse(const char *s, gpt_uuid_t uuid) { struct dce_uuid u; if (gpt_uuid_parse_numeric(s, &u) != -1) { gpt_dce_to_uuid(&u, uuid); return 0; } if (gpt_uuid_parse_symbolic(s, &u) == -1) return -1; gpt_dce_to_uuid(&u, uuid); return 0; } size_t gpt_uuid_query( void (*func)(const char *uuid, const char *short_name, const char *desc)) { size_t i; char buf[64]; if (func != NULL) { for (i = 0; i < __arraycount(gpt_nv); i++) { gpt_uuid_numeric(buf, sizeof(buf), &gpt_nv[i].u); (*func)(buf, gpt_nv[i].n, gpt_nv[i].d); } } return __arraycount(gpt_nv); } #ifndef GPT_UUID_QUERY_ONLY void gpt_uuid_help(const char *prefix) { size_t i; for (i = 0; i < __arraycount(gpt_nv); i++) printf("%s%18.18s\t%s\n", prefix, gpt_nv[i].n, gpt_nv[i].d); } void gpt_uuid_create(gpt_type_t t, gpt_uuid_t u, uint16_t *b, size_t s) { gpt_dce_to_uuid(&gpt_nv[t].u, u); if (b) utf8_to_utf16((const uint8_t *)gpt_nv[t].d, b, s / sizeof(*b)); } static int gpt_uuid_random(gpt_t gpt, struct dce_uuid *u, size_t n) { int fd; uint8_t *p; ssize_t nread; /* Randomly generate the content. */ fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC); if (fd == -1) { gpt_warn(gpt, "Can't open `/dev/urandom'"); return -1; } for (p = (uint8_t *)u; n > 0; p += nread, n -= (size_t)nread) { nread = read(fd, p, n); if (nread < 0) { gpt_warn(gpt, "Can't read `/dev/urandom'"); goto out; } if (nread == 0) { gpt_warn(gpt, "EOF from /dev/urandom"); goto out; } if ((size_t)nread > n) { gpt_warnx(gpt, "read too much: %zd > %zu", nread, n); goto out; } } (void)close(fd); /* Set the version number to 4. */ u->time_hi_and_version &= (uint16_t)~0xf000; u->time_hi_and_version |= 0x4000; return 0; out: (void)close(fd); return -1; } /* * For reproducible builds, we can base UUIDs on one external timestamp. * * Bump timestamp by one 100ns unit to make them unique within a GPT. * Use zero clock sequence and node id, ideally these should also be * passed as input. */ static int gpt_uuid_tstamp(gpt_t gpt, struct dce_uuid *u, size_t l) { uint64_t x; /* check for underflow/overflow of 60bit UUID time */ if (gpt->timestamp < -12219292800 || gpt->timestamp > 103072857660) return -1; /* * Convert to UUID epoch (Gregorian) * and 100ns units */ x = (uint64_t)(gpt->timestamp + 12219292800) * 10000000; /* Make UUID unique */ x += gpt->uuidgen++; /* Set UUID fields for version 1 */ u->time_low = x & 0xffffffff; u->time_mid = (x >> 32) & 0xffff; u->time_hi_and_version = 0x1000 | ((x >> 48) & 0xfff); /* * The clock sequence should make UUIDs unique in case * the clock went backwards. */ u->clock_seq_hi_and_reserved = 0; u->clock_seq_low = 0; /* * A unique system identifier (usually MAC address) */ memset(u->node, 0, sizeof(u->node)); return 0; } int gpt_uuid_generate(gpt_t gpt, gpt_uuid_t t) { int rv; struct dce_uuid u; if (gpt && (gpt->flags & GPT_TIMESTAMP)) rv = gpt_uuid_tstamp(gpt, &u, sizeof(u)); else rv = gpt_uuid_random(gpt, &u, sizeof(u)); if (rv == -1) return -1; /* Fix the reserved bits. */ u.clock_seq_hi_and_reserved &= (uint8_t)~0x40; u.clock_seq_hi_and_reserved |= 0x80; gpt_dce_to_uuid(&u, t); return 0; } #endif