/* $NetBSD: fpu_calcea.c,v 1.28 2024/12/28 03:11:09 isaki Exp $ */ /* * Copyright (c) 1995 Gordon W. Ross * portion Copyright (c) 1995 Ken Nakata * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * 4. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Gordon Ross * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "opt_m68k_arch.h" #include __KERNEL_RCSID(0, "$NetBSD: fpu_calcea.c,v 1.28 2024/12/28 03:11:09 isaki Exp $"); #include #include #include #include #include #include "fpu_emulate.h" #ifdef DEBUG_FPE #define DPRINTF(x) printf x #else #define DPRINTF(x) do {} while (/* CONSTCOND */ 0) #endif /* * Prototypes of static functions */ static int decode_ea6(struct frame *, struct instruction *, struct insn_ea *, int); static int fetch_immed(struct frame *, struct instruction *, int *); static int fetch_disp(struct frame *, struct instruction *, int, int *); static int calc_ea(struct insn_ea *, char *, char **); /* * Helper routines for dealing with "effective address" values. */ /* * Decode an effective address into internal form. * Returns zero on success, else signal number. */ int fpu_decode_ea(struct frame *frame, struct instruction *insn, struct insn_ea *ea, int modreg) { int sig; #ifdef DIAGNOSTIC if (insn->is_datasize < 0) panic("%s: called with uninitialized datasize", __func__); #endif sig = 0; /* Set the most common value here. */ ea->ea_regnum = 8 + (modreg & 7); if ((modreg & 060) == 0) { /* register direct */ ea->ea_regnum = modreg & 0xf; ea->ea_flags = EA_DIRECT; DPRINTF(("%s: register direct reg=%d\n", __func__, ea->ea_regnum)); } else if ((modreg & 077) == 074) { /* immediate */ ea->ea_flags = EA_IMMED; sig = fetch_immed(frame, insn, &ea->ea_immed[0]); DPRINTF(("%s: immediate size=%d\n", __func__, insn->is_datasize)); } /* * rest of the address modes need to be separately * handled for the LC040 and the others. */ #if 0 /* XXX */ else if (frame->f_format == 4 && frame->f_fmt4.f_fa) { /* LC040 */ ea->ea_flags = EA_FRAME_EA; ea->ea_fea = frame->f_fmt4.f_fa; DPRINTF(("%s: 68LC040 - in-frame EA (%p) size %d\n", __func__, (void *)ea->ea_fea, insn->is_datasize)); if ((modreg & 070) == 030) { /* postincrement mode */ ea->ea_flags |= EA_POSTINCR; } else if ((modreg & 070) == 040) { /* predecrement mode */ ea->ea_flags |= EA_PREDECR; #ifdef M68060 #if defined(M68020) || defined(M68030) || defined(M68040) if (cputype == CPU_68060) #endif if (insn->is_datasize == 12) ea->ea_fea -= 8; #endif } } #endif /* XXX */ else { /* 020/030 */ switch (modreg & 070) { case 020: /* (An) */ ea->ea_flags = 0; DPRINTF(("%s: register indirect reg=%d\n", __func__, ea->ea_regnum)); break; case 030: /* (An)+ */ ea->ea_flags = EA_POSTINCR; DPRINTF(("%s: reg indirect postincrement reg=%d\n", __func__, ea->ea_regnum)); break; case 040: /* -(An) */ ea->ea_flags = EA_PREDECR; DPRINTF(("%s: reg indirect predecrement reg=%d\n", __func__, ea->ea_regnum)); break; case 050: /* (d16,An) */ ea->ea_flags = EA_OFFSET; sig = fetch_disp(frame, insn, 1, &ea->ea_offset); DPRINTF(("%s: reg indirect with displacement reg=%d\n", __func__, ea->ea_regnum)); break; case 060: /* (d8,An,Xn) */ ea->ea_flags = EA_INDEXED; sig = decode_ea6(frame, insn, ea, modreg); break; case 070: /* misc. */ ea->ea_regnum = (modreg & 7); switch (modreg & 7) { case 0: /* (xxxx).W */ ea->ea_flags = EA_ABS; sig = fetch_disp(frame, insn, 1, &ea->ea_absaddr); DPRINTF(("%s: absolute address (word)\n", __func__)); break; case 1: /* (xxxxxxxx).L */ ea->ea_flags = EA_ABS; sig = fetch_disp(frame, insn, 2, &ea->ea_absaddr); DPRINTF(("%s: absolute address (long)\n", __func__)); break; case 2: /* (d16,PC) */ ea->ea_flags = EA_PC_REL | EA_OFFSET; sig = fetch_disp(frame, insn, 1, &ea->ea_absaddr); DPRINTF(("%s: pc relative word displacement\n", __func__)); break; case 3: /* (d8,PC,Xn) */ ea->ea_flags = EA_PC_REL | EA_INDEXED; sig = decode_ea6(frame, insn, ea, modreg); break; case 4: /* #data */ /* it should have been taken care of earlier */ default: DPRINTF(("%s: invalid addr mode (7,%d)\n", __func__, modreg & 7)); return SIGILL; } break; } } ea->ea_moffs = 0; return sig; } /* * Decode Mode=6 address modes */ static int decode_ea6(struct frame *frame, struct instruction *insn, struct insn_ea *ea, int modreg) { int idx; int basedisp, outerdisp; int bd_size, od_size; int sig; unsigned short extword; if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &extword)) return SIGSEGV; insn->is_advance += 2; /* get register index */ ea->ea_idxreg = (extword >> 12) & 0xf; idx = frame->f_regs[ea->ea_idxreg]; if ((extword & 0x0800) == 0) { /* if word sized index, sign-extend */ idx &= 0xffff; if (idx & 0x8000) { idx |= 0xffff0000; } } /* scale register index */ idx <<= ((extword >> 9) & 3); if ((extword & 0x100) == 0) { /* brief extension word - sign-extend the displacement */ basedisp = (extword & 0xff); if (basedisp & 0x80) { basedisp |= 0xffffff00; } ea->ea_basedisp = idx + basedisp; ea->ea_outerdisp = 0; DPRINTF(("%s: brief ext word idxreg=%d, basedisp=%08x\n", __func__, ea->ea_idxreg, ea->ea_basedisp)); } else { /* full extension word */ if (extword & 0x80) { ea->ea_flags |= EA_BASE_SUPPRSS; } bd_size = ((extword >> 4) & 3) - 1; od_size = (extword & 3) - 1; sig = fetch_disp(frame, insn, bd_size, &basedisp); if (sig) return sig; if (od_size >= 0) ea->ea_flags |= EA_MEM_INDIR; sig = fetch_disp(frame, insn, od_size, &outerdisp); if (sig) return sig; switch (extword & 0x44) { case 0: /* preindexed */ ea->ea_basedisp = basedisp + idx; ea->ea_outerdisp = outerdisp; break; case 4: /* postindexed */ ea->ea_basedisp = basedisp; ea->ea_outerdisp = outerdisp + idx; break; case 0x40: /* no index */ ea->ea_basedisp = basedisp; ea->ea_outerdisp = outerdisp; break; default: DPRINTF(("%s: invalid indirect mode: ext word %04x\n", __func__, extword)); return SIGILL; break; } DPRINTF(("%s: full ext idxreg=%d, basedisp=%x, outerdisp=%x\n", __func__, ea->ea_idxreg, ea->ea_basedisp, ea->ea_outerdisp)); } DPRINTF(("%s: regnum=%d, flags=%x\n", __func__, ea->ea_regnum, ea->ea_flags)); return 0; } /* * Load a value from an effective address. * Returns zero on success, else signal number. */ int fpu_load_ea(struct frame *frame, struct instruction *insn, struct insn_ea *ea, char *dst) { int *reg; char *src; int len, step; int sig; #ifdef DIAGNOSTIC if (ea->ea_regnum & ~0xF) panic("%s: bad regnum", __func__); #endif DPRINTF(("%s: frame at %p\n", __func__, frame)); /* dst is always int or larger. */ len = insn->is_datasize; if (len < 4) dst += (4 - len); step = (len == 1 && ea->ea_regnum == 15 /* sp */) ? 2 : len; #if 0 if (ea->ea_flags & EA_FRAME_EA) { /* Using LC040 frame EA */ #ifdef DEBUG_FPE if (ea->ea_flags & (EA_PREDECR|EA_POSTINCR)) { printf("%s: frame ea %08x w/r%d\n", __func__, ea->ea_fea, ea->ea_regnum); } else { printf("%s: frame ea %08x\n", __func__, ea->ea_fea); } #endif src = (char *)ea->ea_fea; copyin(src + ea->ea_moffs, dst, len); if (ea->ea_flags & EA_PREDECR) { frame->f_regs[ea->ea_regnum] = ea->ea_fea; ea->ea_fea -= step; ea->ea_moffs = 0; } else if (ea->ea_flags & EA_POSTINCR) { ea->ea_fea += step; frame->f_regs[ea->ea_regnum] = ea->ea_fea; ea->ea_moffs = 0; } else { ea->ea_moffs += step; } /* That's it, folks */ } else #endif if (ea->ea_flags & EA_DIRECT) { if (len > 4) { DPRINTF(("%s: operand doesn't fit CPU reg\n", __func__)); return SIGILL; } if (ea->ea_moffs > 0) { DPRINTF(("%s: more than one move from CPU reg\n", __func__)); return SIGILL; } src = (char *)&frame->f_regs[ea->ea_regnum]; /* The source is an int. */ if (len < 4) { src += (4 - len); DPRINTF(("%s: short/byte opr - addr adjusted\n", __func__)); } DPRINTF(("%s: src %p\n", __func__, src)); memcpy(dst, src, len); } else if (ea->ea_flags & EA_IMMED) { DPRINTF(("%s: immed %08x%08x%08x size %d\n", __func__, ea->ea_immed[0], ea->ea_immed[1], ea->ea_immed[2], len)); src = (char *)&ea->ea_immed[0]; if (len < 4) { src += (4 - len); DPRINTF(("%s: short/byte immed opr - addr adjusted\n", __func__)); } memcpy(dst, src, len); } else if (ea->ea_flags & EA_ABS) { DPRINTF(("%s: abs addr %08x\n", __func__, ea->ea_absaddr)); src = (char *)ea->ea_absaddr; copyin(src, dst, len); } else /* register indirect */ { if (ea->ea_flags & EA_PC_REL) { DPRINTF(("%s: using PC\n", __func__)); reg = NULL; /* * Grab the register contents. 4 is offset to the first * extension word from the opcode */ src = (char *)insn->is_pc + 4; DPRINTF(("%s: pc relative pc+4 = %p\n", __func__, src)); } else /* not PC relative */ { DPRINTF(("%s: using register %c%d\n", __func__, (ea->ea_regnum >= 8) ? 'a' : 'd', ea->ea_regnum & 7)); /* point to the register */ reg = &frame->f_regs[ea->ea_regnum]; if (ea->ea_flags & EA_PREDECR) { DPRINTF(("%s: predecr mode - " "reg decremented\n", __func__)); *reg -= step; ea->ea_moffs = 0; } /* Grab the register contents. */ src = (char *)*reg; DPRINTF(("%s: reg indirect reg = %p\n", __func__, src)); } sig = calc_ea(ea, src, &src); if (sig) return sig; copyin(src + ea->ea_moffs, dst, len); /* do post-increment */ if (ea->ea_flags & EA_POSTINCR) { if (ea->ea_flags & EA_PC_REL) { DPRINTF(("%s: tried to postincrement PC\n", __func__)); return SIGILL; } *reg += step; ea->ea_moffs = 0; DPRINTF(("%s: postinc mode - reg incremented\n", __func__)); } else { ea->ea_moffs += len; } } return 0; } /* * Store a value at the effective address. * Returns zero on success, else signal number. */ int fpu_store_ea(struct frame *frame, struct instruction *insn, struct insn_ea *ea, char *src) { int *reg; char *dst; int len, step; int sig; #ifdef DIAGNOSTIC if (ea->ea_regnum & ~0xf) panic("%s: bad regnum", __func__); #endif if (ea->ea_flags & (EA_IMMED|EA_PC_REL)) { /* not alterable address mode */ DPRINTF(("%s: not alterable address mode\n", __func__)); return SIGILL; } /* src is always int or larger. */ len = insn->is_datasize; if (len < 4) src += (4 - len); step = (len == 1 && ea->ea_regnum == 15 /* sp */) ? 2 : len; if (ea->ea_flags & EA_FRAME_EA) { /* Using LC040 frame EA */ #ifdef DEBUG_FPE if (ea->ea_flags & (EA_PREDECR|EA_POSTINCR)) { printf("%s: frame ea %08x w/r%d\n", __func__, ea->ea_fea, ea->ea_regnum); } else { printf("%s: frame ea %08x\n", __func__, ea->ea_fea); } #endif dst = (char *)ea->ea_fea; copyout(src, dst + ea->ea_moffs, len); if (ea->ea_flags & EA_PREDECR) { frame->f_regs[ea->ea_regnum] = ea->ea_fea; ea->ea_fea -= step; ea->ea_moffs = 0; } else if (ea->ea_flags & EA_POSTINCR) { ea->ea_fea += step; frame->f_regs[ea->ea_regnum] = ea->ea_fea; ea->ea_moffs = 0; } else { ea->ea_moffs += step; } /* That's it, folks */ } else if (ea->ea_flags & EA_ABS) { DPRINTF(("%s: abs addr %08x\n", __func__, ea->ea_absaddr)); dst = (char *)ea->ea_absaddr; copyout(src, dst + ea->ea_moffs, len); ea->ea_moffs += len; } else if (ea->ea_flags & EA_DIRECT) { if (len > 4) { DPRINTF(("%s: operand doesn't fit CPU reg\n", __func__)); return SIGILL; } if (ea->ea_moffs > 0) { DPRINTF(("%s: more than one move to CPU reg\n", __func__)); return SIGILL; } dst = (char *)&frame->f_regs[ea->ea_regnum]; /* The destination is an int. */ if (len < 4) { dst += (4 - len); DPRINTF(("%s: short/byte opr - dst addr adjusted\n", __func__)); } DPRINTF(("%s: dst %p\n", __func__, dst)); memcpy(dst, src, len); } else /* One of MANY indirect forms... */ { DPRINTF(("%s: using register %c%d\n", __func__, (ea->ea_regnum >= 8) ? 'a' : 'd', ea->ea_regnum & 7)); /* point to the register */ reg = &(frame->f_regs[ea->ea_regnum]); /* do pre-decrement */ if (ea->ea_flags & EA_PREDECR) { DPRINTF(("%s: predecr mode - reg decremented\n", __func__)); *reg -= step; ea->ea_moffs = 0; } /* calculate the effective address */ sig = calc_ea(ea, (char *)*reg, &dst); if (sig) return sig; DPRINTF(("%s: dst addr=%p+%d\n", __func__, dst, ea->ea_moffs)); copyout(src, dst + ea->ea_moffs, len); /* do post-increment */ if (ea->ea_flags & EA_POSTINCR) { *reg += step; ea->ea_moffs = 0; DPRINTF(("%s: postinc mode - reg incremented\n", __func__)); } else { ea->ea_moffs += len; } } return 0; } /* * fetch_immed: fetch immediate operand */ static int fetch_immed(struct frame *frame, struct instruction *insn, int *dst) { int data, ext_bytes; unsigned short sval; ext_bytes = insn->is_datasize; if (0 < ext_bytes) { if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &sval)) return SIGSEGV; data = sval; if (ext_bytes == 1) { /* sign-extend byte to long */ data &= 0xff; if (data & 0x80) data |= 0xffffff00; } else if (ext_bytes == 2) { /* sign-extend word to long */ data &= 0xffff; if (data & 0x8000) data |= 0xffff0000; } insn->is_advance += 2; dst[0] = data; } if (2 < ext_bytes) { if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &sval)) return SIGSEGV; insn->is_advance += 2; dst[0] <<= 16; dst[0] |= sval; } if (4 < ext_bytes) { if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &sval)) return SIGSEGV; data = sval; dst[1] = data << 16; if (ufetch_short((void *)(insn->is_pc + insn->is_advance + 2), &sval)) return SIGSEGV; insn->is_advance += 4; dst[1] |= sval; } if (8 < ext_bytes) { if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &sval)) return SIGSEGV; data = sval; dst[2] = data << 16; if (ufetch_short((void *)(insn->is_pc + insn->is_advance + 2), &sval)) return SIGSEGV; insn->is_advance += 4; dst[2] |= sval; } return 0; } /* * fetch_disp: fetch displacement in full extension words */ static int fetch_disp(struct frame *frame, struct instruction *insn, int size, int *res) { int disp, word; unsigned short sval; if (size == 1) { if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &sval)) return SIGSEGV; disp = sval; if (disp & 0x8000) { /* sign-extend */ disp |= 0xffff0000; } insn->is_advance += 2; } else if (size == 2) { if (ufetch_short((void *)(insn->is_pc + insn->is_advance), &sval)) return SIGSEGV; word = sval; disp = word << 16; if (ufetch_short((void *)(insn->is_pc + insn->is_advance + 2), &sval)) return SIGSEGV; disp |= sval; insn->is_advance += 4; } else { disp = 0; } *res = disp; return 0; } /* * Calculates an effective address for all address modes except for * register direct, absolute, and immediate modes. However, it does * not take care of predecrement/postincrement of register content. * Returns a signal value (0 == no error). */ static int calc_ea(struct insn_ea *ea, char *ptr, char **eaddr) /* ptr: base address (usually a register content) */ /* eaddr: pointer to result pointer */ { int word; unsigned short sval; DPRINTF(("%s: reg indirect (reg) = %p\n", __func__, ptr)); if (ea->ea_flags & EA_OFFSET) { /* apply the signed offset */ DPRINTF(("%s: offset %d\n", __func__, ea->ea_offset)); ptr += ea->ea_offset; } else if (ea->ea_flags & EA_INDEXED) { DPRINTF(("%s: indexed mode\n", __func__)); if (ea->ea_flags & EA_BASE_SUPPRSS) { /* base register is suppressed */ ptr = (char *)ea->ea_basedisp; } else { ptr += ea->ea_basedisp; } if (ea->ea_flags & EA_MEM_INDIR) { DPRINTF(("%s: mem indir mode: basedisp=%08x, " "outerdisp=%08x\n", __func__, ea->ea_basedisp, ea->ea_outerdisp)); DPRINTF(("%s: addr fetched from %p\n", __func__, ptr)); /* memory indirect modes */ if (ufetch_short((u_short *)ptr, &sval)) return SIGSEGV; word = sval; word <<= 16; if (ufetch_short((u_short *)(ptr + 2), &sval)) return SIGSEGV; word |= sval; DPRINTF(("%s: fetched ptr 0x%08x\n", __func__, word)); ptr = (char *)word + ea->ea_outerdisp; } } *eaddr = ptr; return 0; }