/* $NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $ */ /* * Copyright 2001, 2002 Wasabi Systems, Inc. * All rights reserved. * * Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * emac(4) supports following ibm4xx's EMACs. * XXXX: ZMII and 'TCP Accelaration Hardware' not support yet... * * tested * ------ * 405EP - 10/100 x2 * 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII * 405GP/GPr o 10/100 * 440EP - 10/100 x2, ZMII * 440GP - 10/100 x2, ZMII * 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3) * 440SP - 10/100/1000 * 440SPe - 10/100/1000, STA v2 */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.59 2024/02/10 09:30:05 andvar Exp $"); #ifdef _KERNEL_OPT #include "opt_emac.h" #endif #include <sys/param.h> #include <sys/systm.h> #include <sys/mbuf.h> #include <sys/kernel.h> #include <sys/socket.h> #include <sys/ioctl.h> #include <sys/cpu.h> #include <sys/device.h> #include <sys/rndsource.h> #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ #include <net/if.h> #include <net/if_dl.h> #include <net/if_media.h> #include <net/if_ether.h> #include <net/bpf.h> #include <powerpc/ibm4xx/cpu.h> #include <powerpc/ibm4xx/dcr4xx.h> #include <powerpc/ibm4xx/mal405gp.h> #include <powerpc/ibm4xx/dev/emacreg.h> #include <powerpc/ibm4xx/dev/if_emacreg.h> #include <powerpc/ibm4xx/dev/if_emacvar.h> #include <powerpc/ibm4xx/dev/malvar.h> #include <powerpc/ibm4xx/dev/opbreg.h> #include <powerpc/ibm4xx/dev/opbvar.h> #include <powerpc/ibm4xx/dev/plbvar.h> #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY) #include <powerpc/ibm4xx/dev/rmiivar.h> #endif #include <dev/mii/miivar.h> #include "locators.h" /* * Transmit descriptor list size. There are two Tx channels, each with * up to 256 hardware descriptors available. We currently use one Tx * channel. We tell the upper layers that they can queue a lot of * packets, and we go ahead and manage up to 64 of them at a time. We * allow up to 16 DMA segments per packet. */ #define EMAC_NTXSEGS 16 #define EMAC_TXQUEUELEN 64 #define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1) #define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4) #define EMAC_NTXDESC 256 #define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1) #define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK) #define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK) /* * Receive descriptor list size. There is one Rx channel with up to 256 * hardware descriptors available. We allocate 64 receive descriptors, * each with a 2k buffer (MCLBYTES). */ #define EMAC_NRXDESC 64 #define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1) #define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK) #define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK) /* * Transmit/receive descriptors that are DMA'd to the EMAC. */ struct emac_control_data { struct mal_descriptor ecd_txdesc[EMAC_NTXDESC]; struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC]; }; #define EMAC_CDOFF(x) offsetof(struct emac_control_data, x) #define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)]) #define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)]) /* * Software state for transmit jobs. */ struct emac_txsoft { struct mbuf *txs_mbuf; /* head of mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ int txs_firstdesc; /* first descriptor in packet */ int txs_lastdesc; /* last descriptor in packet */ int txs_ndesc; /* # of descriptors used */ }; /* * Software state for receive descriptors. */ struct emac_rxsoft { struct mbuf *rxs_mbuf; /* head of mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; /* * Software state per device. */ struct emac_softc { device_t sc_dev; /* generic device information */ int sc_instance; /* instance no. */ bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_sh; /* bus space handle */ bus_dma_tag_t sc_dmat; /* bus DMA tag */ struct ethercom sc_ethercom; /* ethernet common data */ void *sc_sdhook; /* shutdown hook */ void *sc_powerhook; /* power management hook */ struct mii_data sc_mii; /* MII/media information */ struct callout sc_callout; /* tick callout */ uint32_t sc_mr1; /* copy of Mode Register 1 */ uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */ uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */ uint32_t sc_stacr_bits; /* misc bits of STACR */ bool sc_stacr_completed; /* Operation completed of STACR */ int sc_htsize; /* Hash Table size */ bus_dmamap_t sc_cddmamap; /* control data dma map */ #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr /* Software state for transmit/receive descriptors. */ struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN]; struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC]; /* Control data structures. */ struct emac_control_data *sc_control_data; #define sc_txdescs sc_control_data->ecd_txdesc #define sc_rxdescs sc_control_data->ecd_rxdesc #ifdef EMAC_EVENT_COUNTERS struct evcnt sc_ev_rxintr; /* Rx interrupts */ struct evcnt sc_ev_txintr; /* Tx interrupts */ struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */ struct evcnt sc_ev_txde; /* Tx descriptor interrupts */ struct evcnt sc_ev_intr; /* General EMAC interrupts */ struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */ struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */ struct evcnt sc_ev_tu; /* Tx underrun */ #endif /* EMAC_EVENT_COUNTERS */ int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next ready Tx descriptor */ int sc_txsfree; /* number of free Tx jobs */ int sc_txsnext; /* next ready Tx job */ int sc_txsdirty; /* dirty Tx jobs */ int sc_rxptr; /* next ready RX descriptor/descsoft */ krndsource_t rnd_source; /* random source */ void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */ void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/ void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */ }; #ifdef EMAC_EVENT_COUNTERS #define EMAC_EVCNT_INCR(ev) (ev)->ev_count++ #else #define EMAC_EVCNT_INCR(ev) /* nothing */ #endif #define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x))) #define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x))) #define EMAC_CDTXSYNC(sc, x, n, ops) \ do { \ int __x, __n; \ \ __x = (x); \ __n = (n); \ \ /* If it will wrap around, sync to the end of the ring. */ \ if ((__x + __n) > EMAC_NTXDESC) { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \ (EMAC_NTXDESC - __x), (ops)); \ __n -= (EMAC_NTXDESC - __x); \ __x = 0; \ } \ \ /* Now sync whatever is left. */ \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \ } while (/*CONSTCOND*/0) #define EMAC_CDRXSYNC(sc, x, ops) \ do { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \ } while (/*CONSTCOND*/0) #define EMAC_INIT_RXDESC(sc, x) \ do { \ struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \ struct mbuf *__m = __rxs->rxs_mbuf; \ \ /* \ * Note: We scoot the packet forward 2 bytes in the buffer \ * so that the payload after the Ethernet header is aligned \ * to a 4-byte boundary. \ */ \ __m->m_data = __m->m_ext.ext_buf + 2; \ \ __rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \ __rxd->md_data_len = __m->m_ext.ext_size - 2; \ __rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \ /* Set wrap on last descriptor. */ \ (((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \ EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \ } while (/*CONSTCOND*/0) #define EMAC_WRITE(sc, reg, val) \ bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) #define EMAC_READ(sc, reg) \ bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg)) #define EMAC_SET_FILTER(aht, crc) \ do { \ (aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \ } while (/*CONSTCOND*/0) #define EMAC_SET_FILTER256(aht, crc) \ do { \ (aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \ } while (/*CONSTCOND*/0) static int emac_match(device_t, cfdata_t, void *); static void emac_attach(device_t, device_t, void *); static int emac_intr(void *); static void emac_shutdown(void *); static void emac_start(struct ifnet *); static int emac_ioctl(struct ifnet *, u_long, void *); static int emac_init(struct ifnet *); static void emac_stop(struct ifnet *, int); static void emac_watchdog(struct ifnet *); static int emac_add_rxbuf(struct emac_softc *, int); static void emac_rxdrain(struct emac_softc *); static int emac_set_filter(struct emac_softc *); static int emac_txreap(struct emac_softc *); static void emac_soft_reset(struct emac_softc *); static void emac_smart_reset(struct emac_softc *); static int emac_mii_readreg(device_t, int, int, uint16_t *); static int emac_mii_writereg(device_t, int, int, uint16_t); static void emac_mii_statchg(struct ifnet *); static uint32_t emac_mii_wait(struct emac_softc *); static void emac_mii_tick(void *); int emac_copy_small = 0; CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc), emac_match, emac_attach, NULL, NULL); static int emac_match(device_t parent, cfdata_t cf, void *aux) { struct opb_attach_args *oaa = aux; /* match only on-chip ethernet devices */ if (strcmp(oaa->opb_name, cf->cf_name) == 0) return 1; return 0; } static void emac_attach(device_t parent, device_t self, void *aux) { struct opb_attach_args *oaa = aux; struct emac_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data *mii = &sc->sc_mii; const char * xname = device_xname(self); bus_dma_segment_t seg; int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY; const uint8_t *enaddr; prop_dictionary_t dict = device_properties(self); prop_data_t ea; bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh); sc->sc_dev = self; sc->sc_instance = oaa->opb_instance; sc->sc_st = oaa->opb_bt; sc->sc_dmat = oaa->opb_dmat; callout_init(&sc->sc_callout, 0); aprint_naive("\n"); aprint_normal(": Ethernet Media Access Controller\n"); /* Fetch the Ethernet address. */ ea = prop_dictionary_get(dict, "mac-address"); if (ea == NULL) { aprint_error_dev(self, "unable to get mac-address property\n"); return; } KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); enaddr = prop_data_data_nocopy(ea); aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr)); #if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY) /* Fetch the MII offset. */ prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy); #ifdef EMAC_ZMII_PHY if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII) zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable, &sc->sc_rmii_disable, &sc->sc_rmii_speed); #endif #ifdef EMAC_RGMII_PHY if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII) rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable, &sc->sc_rmii_disable, &sc->sc_rmii_speed); #endif #endif /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) { aprint_error_dev(self, "unable to allocate control data, error = %d\n", error); goto fail_0; } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, sizeof(struct emac_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(self, "unable to map control data, error = %d\n", error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct emac_control_data), 1, sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { aprint_error_dev(self, "unable to create control data DMA map, error = %d\n", error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct emac_control_data), NULL, 0)) != 0) { aprint_error_dev(self, "unable to load control data DMA map, error = %d\n", error); goto fail_3; } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < EMAC_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, EMAC_NTXSEGS, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { aprint_error_dev(self, "unable to create tx DMA map %d, error = %d\n", i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < EMAC_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(self, "unable to create rx DMA map %d, error = %d\n", i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* Soft Reset the EMAC. The chip to a known state. */ emac_soft_reset(sc); opb_freq = opb_get_frequency(); switch (opb_freq) { case 33333333: opbc = STACR_OPBC_33MHZ; break; case 50000000: opbc = STACR_OPBC_50MHZ; break; case 66666666: opbc = STACR_OPBC_66MHZ; break; case 83333333: opbc = STACR_OPBC_83MHZ; break; case 100000000: opbc = STACR_OPBC_100MHZ; break; default: if (opb_freq > 100000000) { opbc = STACR_OPBC_A100MHZ; break; } aprint_error_dev(self, "unsupported OPB frequency %dMHz\n", opb_freq / 1000 / 1000); goto fail_5; } if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) { sc->sc_mr1 = MR1_RFS_GBE(MR1__FS_16KB) | MR1_TFS_GBE(MR1__FS_16KB) | MR1_TR0_MULTIPLE | MR1_OBCI(opbc); sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) { sc->sc_stacr_read = STACR_STAOPC_READ; sc->sc_stacr_write = STACR_STAOPC_WRITE; sc->sc_stacr_bits = STACR_OC; sc->sc_stacr_completed = false; } else { sc->sc_stacr_read = STACR_READ; sc->sc_stacr_write = STACR_WRITE; sc->sc_stacr_completed = true; } } else { /* * Set up Mode Register 1 - set receive and transmit FIFOs to * maximum size, allow transmit of multiple packets (only * channel 0 is used). * * XXX: Allow pause packets?? */ sc->sc_mr1 = MR1_RFS(MR1__FS_4KB) | MR1_TFS(MR1__FS_2KB) | MR1_TR0_MULTIPLE; sc->sc_stacr_read = STACR_READ; sc->sc_stacr_write = STACR_WRITE; sc->sc_stacr_bits = STACR_OPBC(opbc); sc->sc_stacr_completed = true; } intr_establish_xname(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc, device_xname(self)); mal_intr_establish(sc->sc_instance, sc); if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256) sc->sc_htsize = 256; else sc->sc_htsize = 64; /* Clear all interrupts */ EMAC_WRITE(sc, EMAC_ISR, ISR_ALL); /* * Initialise the media structures. */ mii->mii_ifp = ifp; mii->mii_readreg = emac_mii_readreg; mii->mii_writereg = emac_mii_writereg; mii->mii_statchg = emac_mii_statchg; sc->sc_ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); ifp = &sc->sc_ethercom.ec_if; strcpy(ifp->if_xname, xname); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = emac_start; ifp->if_ioctl = emac_ioctl; ifp->if_init = emac_init; ifp->if_stop = emac_stop; ifp->if_watchdog = emac_watchdog; IFQ_SET_READY(&ifp->if_snd); /* * We can support 802.1Q VLAN-sized frames. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* * Attach the interface. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, enaddr); rnd_attach_source(&sc->rnd_source, xname, RND_TYPE_NET, RND_FLAG_DEFAULT); #ifdef EMAC_EVENT_COUNTERS /* * Attach the event counters. */ evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, NULL, xname, "txintr"); evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, NULL, xname, "rxintr"); evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR, NULL, xname, "txde"); evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR, NULL, xname, "rxde"); evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, NULL, xname, "intr"); evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC, NULL, xname, "txreap"); evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, NULL, xname, "txsstall"); evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, NULL, xname, "txdstall"); evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC, NULL, xname, "txdrop"); evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC, NULL, xname, "tu"); #endif /* EMAC_EVENT_COUNTERS */ /* * Make sure the interface is shutdown during reboot. */ sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc); if (sc->sc_sdhook == NULL) aprint_error_dev(self, "WARNING: unable to establish shutdown hook\n"); return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_5: for (i = 0; i < EMAC_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_4: for (i = 0; i < EMAC_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct emac_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &seg, nseg); fail_0: return; } /* * EMAC General interrupt handler */ static int emac_intr(void *arg) { struct emac_softc *sc = arg; uint32_t status; EMAC_EVCNT_INCR(&sc->sc_ev_intr); status = EMAC_READ(sc, EMAC_ISR); /* Clear the interrupt status bits. */ EMAC_WRITE(sc, EMAC_ISR, status); return 1; } static void emac_shutdown(void *arg) { struct emac_softc *sc = arg; emac_stop(&sc->sc_ethercom.ec_if, 0); } /* * ifnet interface functions */ static void emac_start(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; struct mbuf *m0; struct emac_txsoft *txs; bus_dmamap_t dmamap; int error, firsttx, nexttx, lasttx, ofree, seg; lasttx = 0; /* XXX gcc */ if ((ifp->if_flags & IFF_RUNNING) == 0) return; /* * Remember the previous number of free descriptors. */ ofree = sc->sc_txfree; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { /* Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; /* * Get a work queue entry. Reclaim used Tx descriptors if * we are running low. */ if (sc->sc_txsfree < EMAC_TXQUEUE_GC) { emac_txreap(sc); if (sc->sc_txsfree == 0) { EMAC_EVCNT_INCR(&sc->sc_ev_txsstall); break; } } txs = &sc->sc_txsoft[sc->sc_txsnext]; dmamap = txs->txs_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the allotted number of segments, or we * were short on resources. In this case, we'll copy * and try again. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { if (error == EFBIG) { EMAC_EVCNT_INCR(&sc->sc_ev_txdrop); aprint_error_ifnet(ifp, "Tx packet consumes too many " "DMA segments, dropping...\n"); IFQ_DEQUEUE(&ifp->if_snd, m0); m_freem(m0); continue; } /* Short on resources, just stop for now. */ break; } /* * Ensure we have enough descriptors free to describe * the packet. */ if (dmamap->dm_nsegs > sc->sc_txfree) { /* * Not enough free descriptors to transmit this * packet. We haven't committed anything yet, * so just unload the DMA map, put the packet * back on the queue, and punt. Notify the upper * layer that there are not more slots left. * */ bus_dmamap_unload(sc->sc_dmat, dmamap); EMAC_EVCNT_INCR(&sc->sc_ev_txdstall); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so that we can free it * later. */ txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_ndesc = dmamap->dm_nsegs; /* * Initialize the transmit descriptor. */ firsttx = sc->sc_txnext; for (nexttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = EMAC_NEXTTX(nexttx)) { struct mal_descriptor *txdesc = &sc->sc_txdescs[nexttx]; /* * If this is the first descriptor we're * enqueueing, don't set the TX_READY bit just * yet. That could cause a race condition. * We'll do it below. */ txdesc->md_data = dmamap->dm_segs[seg].ds_addr; txdesc->md_data_len = dmamap->dm_segs[seg].ds_len; txdesc->md_stat_ctrl = (txdesc->md_stat_ctrl & MAL_TX_WRAP) | (nexttx == firsttx ? 0 : MAL_TX_READY) | EMAC_TXC_GFCS | EMAC_TXC_GPAD; lasttx = nexttx; } /* Set the LAST bit on the last segment. */ sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST; /* * Set up last segment descriptor to send an interrupt after * that descriptor is transmitted, and bypass existing Tx * descriptor reaping method (for now...). */ sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT; txs->txs_lastdesc = lasttx; /* Sync the descriptors we're using. */ EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * The entire packet chain is set up. Give the * first descriptor to the chip now. */ sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY; EMAC_CDTXSYNC(sc, firsttx, 1, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Tell the EMAC that a new packet is available. */ EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2); /* Advance the tx pointer. */ sc->sc_txfree -= txs->txs_ndesc; sc->sc_txnext = nexttx; sc->sc_txsfree--; sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext); /* * Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (sc->sc_txfree != ofree) /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } static int emac_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct emac_softc *sc = ifp->if_softc; int s, error; s = splnet(); switch (cmd) { case SIOCSIFMTU: { struct ifreq *ifr = (struct ifreq *)data; int maxmtu; if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) maxmtu = EMAC_MAX_MTU; else maxmtu = ETHERMTU; if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu) error = EINVAL; else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) break; else if (ifp->if_flags & IFF_UP) error = emac_init(ifp); else error = 0; break; } default: error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) error = emac_set_filter(sc); else error = 0; } } /* try to get more packets going */ emac_start(ifp); splx(s); return error; } static int emac_init(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; struct emac_rxsoft *rxs; const uint8_t *enaddr = CLLADDR(ifp->if_sadl); int error, i; error = 0; /* Cancel any pending I/O. */ emac_stop(ifp, 0); /* Reset the chip to a known state. */ emac_soft_reset(sc); /* * Initialise the transmit descriptor ring. */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); /* set wrap on last descriptor */ sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP; EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_txfree = EMAC_NTXDESC; sc->sc_txnext = 0; /* * Initialise the transmit job descriptors. */ for (i = 0; i < EMAC_TXQUEUELEN; i++) sc->sc_txsoft[i].txs_mbuf = NULL; sc->sc_txsfree = EMAC_TXQUEUELEN; sc->sc_txsnext = 0; sc->sc_txsdirty = 0; /* * Initialise the receiver descriptor and receive job * descriptor rings. */ for (i = 0; i < EMAC_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = emac_add_rxbuf(sc, i)) != 0) { aprint_error_ifnet(ifp, "unable to allocate or map rx buffer %d," " error = %d\n", i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ emac_rxdrain(sc); goto out; } } else EMAC_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; /* * Set the current media. */ if ((error = ether_mediachange(ifp)) != 0) goto out; /* * Load the MAC address. */ EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]); EMAC_WRITE(sc, EMAC_IALR, enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]); /* Enable the transmit and receive channel on the MAL. */ error = mal_start(sc->sc_instance, EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0)); if (error) goto out; sc->sc_mr1 &= ~MR1_JPSM; if (ifp->if_mtu > ETHERMTU) /* Enable Jumbo Packet Support Mode */ sc->sc_mr1 |= MR1_JPSM; /* Set fifos, media modes. */ EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1); /* * Enable Individual and (possibly) Broadcast Address modes, * runt packets, and strip padding. */ EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 | (ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) | (ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0)); /* * Set multicast filter. */ emac_set_filter(sc); /* * Set low- and urgent-priority request thresholds. */ EMAC_WRITE(sc, EMAC_TMR1, ((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */ ((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK)); /* * Set Transmit Request Threshold Register. */ EMAC_WRITE(sc, EMAC_TRTR, TRTR_256); /* * Set high and low receive watermarks. */ EMAC_WRITE(sc, EMAC_RWMR, 30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT); /* * Set frame gap. */ EMAC_WRITE(sc, EMAC_IPGVR, 8); /* * Set interrupt status enable bits for EMAC. */ EMAC_WRITE(sc, EMAC_ISER, ISR_TXPE | /* TX Parity Error */ ISR_RXPE | /* RX Parity Error */ ISR_TXUE | /* TX Underrun Event */ ISR_RXOE | /* RX Overrun Event */ ISR_OVR | /* Overrun Error */ ISR_PP | /* Pause Packet */ ISR_BP | /* Bad Packet */ ISR_RP | /* Runt Packet */ ISR_SE | /* Short Event */ ISR_ALE | /* Alignment Error */ ISR_BFCS | /* Bad FCS */ ISR_PTLE | /* Packet Too Long Error */ ISR_ORE | /* Out of Range Error */ ISR_IRE | /* In Range Error */ ISR_SE0 | /* Signal Quality Error 0 (SQE) */ ISR_TE0 | /* Transmit Error 0 */ ISR_MOS | /* MMA Operation Succeeded */ ISR_MOF); /* MMA Operation Failed */ /* * Enable the transmit and receive channel on the EMAC. */ EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE); /* * Start the one second MII clock. */ callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc); /* * ... all done! */ ifp->if_flags |= IFF_RUNNING; out: if (error) { ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; aprint_error_ifnet(ifp, "interface not running\n"); } return error; } static void emac_stop(struct ifnet *ifp, int disable) { struct emac_softc *sc = ifp->if_softc; struct emac_txsoft *txs; int i; /* Stop the one second clock. */ callout_stop(&sc->sc_callout); /* Down the MII */ mii_down(&sc->sc_mii); /* Disable interrupts. */ EMAC_WRITE(sc, EMAC_ISER, 0); /* Disable the receive and transmit channels. */ mal_stop(sc->sc_instance); /* Disable the transmit enable and receive MACs. */ EMAC_WRITE(sc, EMAC_MR0, EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE)); /* Release any queued transmit buffers. */ for (i = 0; i < EMAC_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } } if (disable) emac_rxdrain(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; } static void emac_watchdog(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; /* * Since we're not interrupting every packet, sweep * up before we report an error. */ emac_txreap(sc); if (sc->sc_txfree != EMAC_NTXDESC) { aprint_error_ifnet(ifp, "device timeout (txfree %d txsfree %d txnext %d)\n", sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext); if_statinc(ifp, if_oerrors); /* Reset the interface. */ (void)emac_init(ifp); } else if (ifp->if_flags & IFF_DEBUG) aprint_error_ifnet(ifp, "recovered from device timeout\n"); /* try to get more packets going */ emac_start(ifp); } static int emac_add_rxbuf(struct emac_softc *sc, int idx) { struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", idx, error); panic("emac_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); EMAC_INIT_RXDESC(sc, idx); return 0; } static void emac_rxdrain(struct emac_softc *sc) { struct emac_rxsoft *rxs; int i; for (i = 0; i < EMAC_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } static int emac_set_filter(struct emac_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ether_multistep step; struct ether_multi *enm; struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; int regs, cnt = 0, i; if (sc->sc_htsize == 256) { reg = EMAC_GAHT256(0); regs = 8; } else { reg = EMAC_GAHT64(0); regs = 4; } mask = (1ULL << (sc->sc_htsize / regs)) - 1; rmr = EMAC_READ(sc, EMAC_RMR); rmr &= ~(RMR_PMME | RMR_MAE); ifp->if_flags &= ~IFF_ALLMULTI; ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ gaht[0] = gaht[1] = gaht[2] = gaht[3] = gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask; break; } crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); if (sc->sc_htsize == 256) EMAC_SET_FILTER256(gaht, crc); else EMAC_SET_FILTER(gaht, crc); ETHER_NEXT_MULTI(step, enm); cnt++; } ETHER_UNLOCK(ec); for (i = 1, tmp = gaht[0]; i < regs; i++) tmp &= gaht[i]; if (tmp == mask) { /* All categories are true. */ ifp->if_flags |= IFF_ALLMULTI; rmr |= RMR_PMME; } else if (cnt != 0) { /* Some categories are true. */ for (i = 0; i < regs; i++) EMAC_WRITE(sc, reg + (i << 2), gaht[i]); rmr |= RMR_MAE; } EMAC_WRITE(sc, EMAC_RMR, rmr); return 0; } /* * Reap completed Tx descriptors. */ static int emac_txreap(struct emac_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct emac_txsoft *txs; int handled, i; uint32_t txstat, count; EMAC_EVCNT_INCR(&sc->sc_ev_txreap); handled = 0; count = 0; /* * Go through our Tx list and free mbufs for those * frames that have been transmitted. */ for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN; i = EMAC_NEXTTXS(i), sc->sc_txsfree++) { txs = &sc->sc_txsoft[i]; EMAC_CDTXSYNC(sc, txs->txs_lastdesc, txs->txs_dmamap->dm_nsegs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl; if (txstat & MAL_TX_READY) break; handled = 1; /* * Check for errors and collisions. */ if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED)) if_statinc(ifp, if_oerrors); #ifdef EMAC_EVENT_COUNTERS if (txstat & EMAC_TXS_UR) EMAC_EVCNT_INCR(&sc->sc_ev_tu); #endif /* EMAC_EVENT_COUNTERS */ if (txstat & (EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) { if (txstat & EMAC_TXS_EC) if_statadd(ifp, if_collisions, 16); else if (txstat & EMAC_TXS_MC) if_statadd(ifp, if_collisions, 2); /* XXX? */ else if (txstat & EMAC_TXS_SC) if_statinc(ifp, if_collisions); if (txstat & EMAC_TXS_LC) if_statinc(ifp, if_collisions); } else if_statinc(ifp, if_opackets); if (ifp->if_flags & IFF_DEBUG) { if (txstat & EMAC_TXS_ED) aprint_error_ifnet(ifp, "excessive deferral\n"); if (txstat & EMAC_TXS_EC) aprint_error_ifnet(ifp, "excessive collisions\n"); } sc->sc_txfree += txs->txs_ndesc; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; count++; } /* Update the dirty transmit buffer pointer. */ sc->sc_txsdirty = i; /* * If there are no more pending transmissions, cancel the watchdog * timer. */ if (sc->sc_txsfree == EMAC_TXQUEUELEN) ifp->if_timer = 0; if (count != 0) rnd_add_uint32(&sc->rnd_source, count); return handled; } /* * Reset functions */ static void emac_soft_reset(struct emac_softc *sc) { uint32_t sdr; int t = 0; /* * The PHY must provide a TX Clk in order perform a soft reset the * EMAC. If none is present, select the internal clock, * SDR0_MFR[E0CS, E1CS]. After the soft reset, select the external * clock. */ sdr = mfsdr(DCR_SDR0_MFR); sdr |= SDR0_MFR_ECS(sc->sc_instance); mtsdr(DCR_SDR0_MFR, sdr); EMAC_WRITE(sc, EMAC_MR0, MR0_SRST); sdr = mfsdr(DCR_SDR0_MFR); sdr &= ~SDR0_MFR_ECS(sc->sc_instance); mtsdr(DCR_SDR0_MFR, sdr); delay(5); /* wait finish */ while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) { if (++t == 1000000 /* 1sec XXXXX */) { aprint_error_dev(sc->sc_dev, "Soft Reset failed\n"); return; } delay(1); } } static void emac_smart_reset(struct emac_softc *sc) { uint32_t mr0; int t = 0; mr0 = EMAC_READ(sc, EMAC_MR0); if (mr0 & (MR0_TXE | MR0_RXE)) { mr0 &= ~(MR0_TXE | MR0_RXE); EMAC_WRITE(sc, EMAC_MR0, mr0); /* wait idel state */ while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) != (MR0_TXI | MR0_RXI)) { if (++t == 1000000 /* 1sec XXXXX */) { aprint_error_dev(sc->sc_dev, "Smart Reset failed\n"); return; } delay(1); } } } /* * MII related functions */ static int emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct emac_softc *sc = device_private(self); uint32_t sta_reg; int rv; if (sc->sc_rmii_enable) sc->sc_rmii_enable(device_parent(self), sc->sc_instance); /* wait for PHY data transfer to complete */ if ((rv = emac_mii_wait(sc)) != 0) goto fail; sta_reg = sc->sc_stacr_read | (reg << STACR_PRA_SHIFT) | (phy << STACR_PCDA_SHIFT) | sc->sc_stacr_bits; EMAC_WRITE(sc, EMAC_STACR, sta_reg); if ((rv = emac_mii_wait(sc)) != 0) goto fail; sta_reg = EMAC_READ(sc, EMAC_STACR); if (sta_reg & STACR_PHYE) { rv = -1; goto fail; } *val = sta_reg >> STACR_PHYD_SHIFT; fail: if (sc->sc_rmii_disable) sc->sc_rmii_disable(device_parent(self), sc->sc_instance); return rv; } static int emac_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct emac_softc *sc = device_private(self); uint32_t sta_reg; int rv; if (sc->sc_rmii_enable) sc->sc_rmii_enable(device_parent(self), sc->sc_instance); /* wait for PHY data transfer to complete */ if ((rv = emac_mii_wait(sc)) != 0) goto out; sta_reg = (val << STACR_PHYD_SHIFT) | sc->sc_stacr_write | (reg << STACR_PRA_SHIFT) | (phy << STACR_PCDA_SHIFT) | sc->sc_stacr_bits; EMAC_WRITE(sc, EMAC_STACR, sta_reg); if ((rv = emac_mii_wait(sc)) != 0) goto out; if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE) { aprint_error_dev(sc->sc_dev, "MII PHY Error\n"); rv = -1; } out: if (sc->sc_rmii_disable) sc->sc_rmii_disable(device_parent(self), sc->sc_instance); return rv; } static void emac_mii_statchg(struct ifnet *ifp) { struct emac_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; /* * MR1 can only be written immediately after a reset... */ emac_smart_reset(sc); sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST); if (mii->mii_media_active & IFM_FDX) sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST); if (mii->mii_media_active & IFM_FLOW) sc->sc_mr1 |= MR1_EIFC; if (mii->mii_media_active & IFM_LOOP) sc->sc_mr1 |= MR1_ILE; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST); break; case IFM_100_TX: sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST); break; case IFM_10_T: sc->sc_mr1 |= MR1_MF_10MBS; break; case IFM_NONE: break; default: aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n", IFM_SUBTYPE(mii->mii_media_active)); break; } if (sc->sc_rmii_speed) sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance, IFM_SUBTYPE(mii->mii_media_active)); EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1); /* Enable TX and RX if already RUNNING */ if (ifp->if_flags & IFF_RUNNING) EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE); } static uint32_t emac_mii_wait(struct emac_softc *sc) { int i; uint32_t oc; /* wait for PHY data transfer to complete */ i = 0; oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC; while ((oc == STACR_OC) != sc->sc_stacr_completed) { delay(7); if (i++ > 5) { aprint_error_dev(sc->sc_dev, "MII timed out\n"); return ETIMEDOUT; } oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC; } return 0; } static void emac_mii_tick(void *arg) { struct emac_softc *sc = arg; int s; if (!device_is_active(sc->sc_dev)) return; s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc); } int emac_txeob_intr(void *arg) { struct emac_softc *sc = arg; int handled = 0; EMAC_EVCNT_INCR(&sc->sc_ev_txintr); handled |= emac_txreap(sc); /* try to get more packets going */ if_schedule_deferred_start(&sc->sc_ethercom.ec_if); return handled; } int emac_rxeob_intr(void *arg) { struct emac_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct emac_rxsoft *rxs; struct mbuf *m; uint32_t rxstat, count; int i, len; EMAC_EVCNT_INCR(&sc->sc_ev_rxintr); count = 0; for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; EMAC_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = sc->sc_rxdescs[i].md_stat_ctrl; if (rxstat & MAL_RX_EMPTY) { /* * We have processed all of the receive buffers. */ /* Flush current empty descriptor */ EMAC_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); break; } /* * If an error occurred, update stats, clear the status * word, and leave the packet buffer in place. It will * simply be reused the next time the ring comes around. */ if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE | EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE | EMAC_RXS_IRE)) { #define PRINTERR(bit, str) \ if (rxstat & (bit)) \ aprint_error_ifnet(ifp, \ "receive error: %s\n", str) if_statinc(ifp, if_ierrors); PRINTERR(EMAC_RXS_OE, "overrun error"); PRINTERR(EMAC_RXS_BP, "bad packet"); PRINTERR(EMAC_RXS_RP, "runt packet"); PRINTERR(EMAC_RXS_SE, "short event"); PRINTERR(EMAC_RXS_AE, "alignment error"); PRINTERR(EMAC_RXS_BFCS, "bad FCS"); PRINTERR(EMAC_RXS_PTL, "packet too long"); PRINTERR(EMAC_RXS_ORE, "out of range error"); PRINTERR(EMAC_RXS_IRE, "in range error"); #undef PRINTERR EMAC_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * No errors; receive the packet. Note, the 405GP emac * includes the CRC with every packet. */ len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN; /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. * * Otherwise, we add a new buffer to the receive * chain. If this fails, we drop the packet and * recycle the old buffer. */ if (emac_copy_small != 0 && len <= MHLEN) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) goto dropit; memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); EMAC_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); } else { m = rxs->rxs_mbuf; if (emac_add_rxbuf(sc, i) != 0) { dropit: if_statinc(ifp, if_ierrors); EMAC_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } } m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = len; /* Pass it on. */ if_percpuq_enqueue(ifp->if_percpuq, m); count++; } /* Update the receive pointer. */ sc->sc_rxptr = i; if (count != 0) rnd_add_uint32(&sc->rnd_source, count); return 1; } int emac_txde_intr(void *arg) { struct emac_softc *sc = arg; EMAC_EVCNT_INCR(&sc->sc_ev_txde); aprint_error_dev(sc->sc_dev, "emac_txde_intr\n"); return 1; } int emac_rxde_intr(void *arg) { struct emac_softc *sc = arg; int i; EMAC_EVCNT_INCR(&sc->sc_ev_rxde); aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n"); /* * XXX! * This is a bit drastic; we just drop all descriptors that aren't * "clean". We should probably send any that are up the stack. */ for (i = 0; i < EMAC_NRXDESC; i++) { EMAC_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (sc->sc_rxdescs[i].md_data_len != MCLBYTES) EMAC_INIT_RXDESC(sc, i); } return 1; }