/* $NetBSD: gem.c,v 1.138 2024/07/05 04:31:51 rin Exp $ */ /* * * Copyright (C) 2001 Eduardo Horvath. * Copyright (c) 2001-2003 Thomas Moestl * All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers * See `GEM Gigabit Ethernet ASIC Specification' * http://www.sun.com/processors/manuals/ge.pdf */ #include __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.138 2024/07/05 04:31:51 rin Exp $"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #define TRIES 10000 static void gem_inten(struct gem_softc *); static void gem_start(struct ifnet *); static void gem_stop(struct ifnet *, int); int gem_ioctl(struct ifnet *, u_long, void *); void gem_tick(void *); void gem_watchdog(struct ifnet *); void gem_rx_watchdog(void *); void gem_pcs_start(struct gem_softc *sc); void gem_pcs_stop(struct gem_softc *sc, int); int gem_init(struct ifnet *); void gem_init_regs(struct gem_softc *sc); static int gem_ringsize(int sz); static int gem_meminit(struct gem_softc *); void gem_mifinit(struct gem_softc *); static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int, uint32_t, uint32_t); void gem_reset(struct gem_softc *); int gem_reset_rx(struct gem_softc *sc); static void gem_reset_rxdma(struct gem_softc *sc); static void gem_rx_common(struct gem_softc *sc); int gem_reset_tx(struct gem_softc *sc); int gem_disable_rx(struct gem_softc *sc); int gem_disable_tx(struct gem_softc *sc); static void gem_rxdrain(struct gem_softc *sc); int gem_add_rxbuf(struct gem_softc *sc, int idx); void gem_setladrf(struct gem_softc *); /* MII methods & callbacks */ static int gem_mii_readreg(device_t, int, int, uint16_t *); static int gem_mii_writereg(device_t, int, int, uint16_t); static void gem_mii_statchg(struct ifnet *); static int gem_ifflags_cb(struct ethercom *); void gem_statuschange(struct gem_softc *); int gem_ser_mediachange(struct ifnet *); void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *); static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage); struct mbuf *gem_get(struct gem_softc *, int, int); int gem_put(struct gem_softc *, int, struct mbuf *); void gem_read(struct gem_softc *, int, int); int gem_pint(struct gem_softc *); int gem_eint(struct gem_softc *, u_int); int gem_rint(struct gem_softc *); int gem_tint(struct gem_softc *); void gem_power(int, void *); #ifdef GEM_DEBUG static void gem_txsoft_print(const struct gem_softc *, int, int); #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ printf x #else #define DPRINTF(sc, x) /* nothing */ #endif #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header)) int gem_detach(struct gem_softc *sc, int flags) { int i; struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; /* * Free any resources we've allocated during the attach. * Do this in reverse order and fall through. */ switch (sc->sc_att_stage) { case GEM_ATT_BACKEND_2: case GEM_ATT_BACKEND_1: case GEM_ATT_FINISHED: bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0); gem_stop(&sc->sc_ethercom.ec_if, 1); #ifdef GEM_COUNTERS for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; ) evcnt_detach(&sc->sc_ev_rxhist[i]); evcnt_detach(&sc->sc_ev_rxnobuf); evcnt_detach(&sc->sc_ev_rxfull); evcnt_detach(&sc->sc_ev_rxint); evcnt_detach(&sc->sc_ev_txint); evcnt_detach(&sc->sc_ev_rxoverflow); #endif evcnt_detach(&sc->sc_ev_intr); rnd_detach_source(&sc->rnd_source); ether_ifdetach(ifp); if_detach(ifp); callout_destroy(&sc->sc_tick_ch); callout_destroy(&sc->sc_rx_watchdog); /*FALLTHROUGH*/ case GEM_ATT_MII: sc->sc_att_stage = GEM_ATT_MII; mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_fini(&sc->sc_mii.mii_media); /*FALLTHROUGH*/ case GEM_ATT_7: for (i = 0; i < GEM_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap); } /*FALLTHROUGH*/ case GEM_ATT_6: for (i = 0; i < GEM_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); /*FALLTHROUGH*/ case GEM_ATT_5: bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap); /*FALLTHROUGH*/ case GEM_ATT_4: bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap); /*FALLTHROUGH*/ case GEM_ATT_3: bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); /*FALLTHROUGH*/ case GEM_ATT_2: bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data, sizeof(struct gem_control_data)); /*FALLTHROUGH*/ case GEM_ATT_1: bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); /*FALLTHROUGH*/ case GEM_ATT_0: sc->sc_att_stage = GEM_ATT_0; /*FALLTHROUGH*/ case GEM_ATT_BACKEND_0: break; } return 0; } static void gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage) { cfattach_t ca = device_cfattach(sc->sc_dev); sc->sc_att_stage = stage; (*ca->ca_detach)(sc->sc_dev, 0); } /* * gem_attach: * * Attach a Gem interface to the system. */ void gem_attach(struct gem_softc *sc, const uint8_t *enaddr) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data *mii = &sc->sc_mii; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; struct ifmedia_entry *ife; int i, error, phyaddr; uint32_t v; char *nullbuf; /* Make sure the chip is stopped. */ ifp->if_softc = sc; gem_reset(sc); /* * Allocate the control data structures, and create and load the * DMA map for it. gem_control_data is 9216 bytes, we have space for * the padding buffer in the bus_dmamem_alloc()'d memory. */ if ((error = bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE, 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); gem_partial_detach(sc, GEM_ATT_0); return; } /* XXX should map this in with correct endianness */ if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, sizeof(struct gem_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); gem_partial_detach(sc, GEM_ATT_1); return; } nullbuf = (char *)sc->sc_control_data + sizeof(struct gem_control_data); if ((error = bus_dmamap_create(sc->sc_dmatag, sizeof(struct gem_control_data), 1, sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, error = %d\n", error); gem_partial_detach(sc, GEM_ATT_2); return; } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct gem_control_data), NULL, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); gem_partial_detach(sc, GEM_ATT_3); return; } memset(nullbuf, 0, ETHER_MIN_TX); if ((error = bus_dmamap_create(sc->sc_dmatag, ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create padding DMA map, error = %d\n", error); gem_partial_detach(sc, GEM_ATT_4); return; } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap, nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load padding DMA map, error = %d\n", error); gem_partial_detach(sc, GEM_ATT_5); return; } bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX, BUS_DMASYNC_PREWRITE); /* * Initialize the transmit job descriptors. */ SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); /* * Create the transmit buffer DMA maps. */ for (i = 0; i < GEM_TXQUEUELEN; i++) { struct gem_txsoft *txs; txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; if ((error = bus_dmamap_create(sc->sc_dmatag, ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS, ETHER_MAX_LEN_JUMBO, 0, 0, &txs->txs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, error = %d\n", i, error); gem_partial_detach(sc, GEM_ATT_6); return; } SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Create the receive buffer DMA maps. */ for (i = 0; i < GEM_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, error = %d\n", i, error); gem_partial_detach(sc, GEM_ATT_7); return; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* Initialize ifmedia structures and MII info */ mii->mii_ifp = ifp; mii->mii_readreg = gem_mii_readreg; mii->mii_writereg = gem_mii_writereg; mii->mii_statchg = gem_mii_statchg; sc->sc_ethercom.ec_mii = mii; /* * Initialization based on `GEM Gigabit Ethernet ASIC Specification' * Section 3.2.1 `Initialization Sequence'. * However, we can't assume SERDES or Serialink if neither * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set * being set, as both are set on Sun X1141A (with SERDES). So, * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL. * Also, for variants that report 2 PHY's, we prefer the external * PHY over the internal PHY, so we look for that first. */ gem_mifinit(sc); if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, ether_mediastatus); /* Look for external PHY */ if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL; bus_space_write_4(t, h, GEM_MIF_CONFIG, sc->sc_mif_config); switch (sc->sc_variant) { case GEM_SUN_ERI: phyaddr = GEM_PHYAD_EXTERNAL; break; default: phyaddr = MII_PHY_ANY; break; } mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, MII_OFFSET_ANY, MIIF_FORCEANEG); } #ifdef GEM_DEBUG else aprint_debug_dev(sc->sc_dev, "using external PHY\n"); #endif /* Look for internal PHY if no external PHY was found */ if (LIST_EMPTY(&mii->mii_phys) && ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) || (sc->sc_variant == GEM_APPLE_K2_GMAC))) { sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL; bus_space_write_4(t, h, GEM_MIF_CONFIG, sc->sc_mif_config); switch (sc->sc_variant) { case GEM_SUN_ERI: case GEM_APPLE_K2_GMAC: phyaddr = GEM_PHYAD_INTERNAL; break; case GEM_APPLE_GMAC: phyaddr = GEM_PHYAD_EXTERNAL; break; default: phyaddr = MII_PHY_ANY; break; } mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, MII_OFFSET_ANY, MIIF_FORCEANEG); #ifdef GEM_DEBUG if (!LIST_EMPTY(&mii->mii_phys)) aprint_debug_dev(sc->sc_dev, "using internal PHY\n"); #endif } if (LIST_EMPTY(&mii->mii_phys)) { /* No PHY attached */ aprint_error_dev(sc->sc_dev, "PHY probe failed\n"); gem_partial_detach(sc, GEM_ATT_MII); return; } else { struct mii_softc *child; /* * Walk along the list of attached MII devices and * establish an `MII instance' to `PHY number' * mapping. */ LIST_FOREACH(child, &mii->mii_phys, mii_list) { /* * Note: we support just one PHY: the internal * or external MII is already selected for us * by the GEM_MIF_CONFIG register. */ if (child->mii_phy > 1 || child->mii_inst > 0) { aprint_error_dev(sc->sc_dev, "cannot accommodate MII device" " %s at PHY %d, instance %d\n", device_xname(child->mii_dev), child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } if (sc->sc_variant != GEM_SUN_ERI) bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); /* * XXX - we can really do the following ONLY if the * PHY indeed has the auto negotiation capability!! */ ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); } } else { ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange, gem_ser_mediastatus); /* SERDES or Serialink */ if (sc->sc_flags & GEM_SERDES) { bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_SERDES); } else { sc->sc_flags |= GEM_SERIAL; bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_SERIAL); } aprint_normal_dev(sc->sc_dev, "using external PCS %s: ", sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink"); ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL); /* Check for FDX and HDX capabilities */ sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR); if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL); aprint_normal("1000baseSX-FDX, "); } if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL); aprint_normal("1000baseSX-HDX, "); } ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); sc->sc_mii_media = IFM_AUTO; aprint_normal("auto\n"); gem_pcs_stop(sc, 1); } /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ /* Announce ourselves. */ aprint_normal_dev(sc->sc_dev, "Ethernet address %s", ether_sprintf(enaddr)); /* Get RX FIFO size */ sc->sc_rxfifosize = 64 * bus_space_read_4(t, h, GEM_RX_FIFO_SIZE); aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024); /* Get TX FIFO size */ v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE); aprint_normal(", %uKB TX fifo\n", v / 16); /* Initialize ifnet structure. */ strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; sc->sc_if_flags = ifp->if_flags; #if 0 /* * The GEM hardware supports basic TCP checksum offloading only. * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80) * have bugs in the receive checksum, so don't enable it for now. */ if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) || (GEM_IS_APPLE(sc) && (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80))) ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx; #endif ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx; ifp->if_start = gem_start; ifp->if_ioctl = gem_ioctl; ifp->if_watchdog = gem_watchdog; ifp->if_stop = gem_stop; ifp->if_init = gem_init; IFQ_SET_READY(&ifp->if_snd); /* * If we support GigE media, we support jumbo frames too. * Unless we are Apple. */ TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) { if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T || IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX || IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX || IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) { if (!GEM_IS_APPLE(sc)) sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; sc->sc_flags |= GEM_GIGABIT; break; } } /* claim 802.1q capability */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* Attach the interface. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, enaddr); ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb); rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, RND_FLAG_DEFAULT); evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "interrupts"); #ifdef GEM_COUNTERS evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts"); evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR, &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts"); evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full"); evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure"); evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc"); evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR, &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc"); #endif callout_init(&sc->sc_tick_ch, 0); callout_setfunc(&sc->sc_tick_ch, gem_tick, sc); callout_init(&sc->sc_rx_watchdog, 0); callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc); sc->sc_att_stage = GEM_ATT_FINISHED; return; } void gem_tick(void *arg) { struct gem_softc *sc = arg; int s; if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) { /* * We have to reset everything if we failed to get a * PCS interrupt. Restarting the callout is handled * in gem_pcs_start(). */ gem_init(&sc->sc_ethercom.ec_if); } else { s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_schedule(&sc->sc_tick_ch, hz); } } static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr, uint32_t set) { int i; uint32_t reg; for (i = TRIES; i--; DELAY(100)) { reg = bus_space_read_4(sc->sc_bustag, h, r); if ((reg & clr) == 0 && (reg & set) == set) return (1); } return (0); } void gem_reset(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h2; int s; s = splnet(); DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev))); gem_reset_rx(sc); gem_reset_tx(sc); /* Do a full reset */ bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX); if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) aprint_error_dev(sc->sc_dev, "cannot reset device\n"); splx(s); } /* * gem_rxdrain: * * Drain the receive queue. */ static void gem_rxdrain(struct gem_softc *sc) { struct gem_rxsoft *rxs; int i; for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } /* * Reset the whole thing. */ static void gem_stop(struct ifnet *ifp, int disable) { struct gem_softc *sc = ifp->if_softc; struct gem_txsoft *txs; DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev))); callout_halt(&sc->sc_tick_ch, NULL); callout_halt(&sc->sc_rx_watchdog, NULL); if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) gem_pcs_stop(sc, disable); else mii_down(&sc->sc_mii); /* XXX - Should we reset these instead? */ gem_disable_tx(sc); gem_disable_rx(sc); /* * Release any queued transmit buffers. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); if (txs->txs_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~IFF_RUNNING; sc->sc_if_flags = ifp->if_flags; ifp->if_timer = 0; if (disable) gem_rxdrain(sc); } /* * Reset the receiver */ int gem_reset_rx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_rx(sc); bus_space_write_4(t, h, GEM_RX_CONFIG, 0); bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); /* Wait till it finishes */ if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0)) aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n"); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ERX */ bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX); bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); /* Wait till it finishes */ if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) { aprint_error_dev(sc->sc_dev, "cannot reset receiver\n"); return (1); } return (0); } /* * Reset the receiver DMA engine. * * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW * etc in order to reset the receiver DMA engine only and not do a full * reset which amongst others also downs the link and clears the FIFOs. */ static void gem_reset_rxdma(struct gem_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; int i; if (gem_reset_rx(sc) != 0) { gem_init(ifp); return; } for (i = 0; i < GEM_NRXDESC; i++) if (sc->sc_rxsoft[i].rxs_mbuf != NULL) GEM_UPDATE_RXDESC(sc, i); sc->sc_rxptr = 0; GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); /* Reprogram Descriptor Ring Base Addresses */ bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32); bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); /* Redo ERX Configuration */ gem_rx_common(sc); /* Give the receiver a swift kick */ bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4); } /* * Common RX configuration for gem_init() and gem_reset_rxdma(). */ static void gem_rx_common(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t v; /* Encode Receive Descriptor ring size: four possible values */ v = gem_ringsize(GEM_NRXDESC /*XXX*/); /* Set receive h/w checksum offset */ #ifdef INET v |= (ETHER_HDR_LEN + sizeof(struct ip) + ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT; #endif /* Enable RX DMA */ bus_space_write_4(t, h, GEM_RX_CONFIG, v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) | (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN); /* * The following value is for an OFF Threshold of about 3/4 full * and an ON Threshold of 1/4 full. */ bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, (3 * sc->sc_rxfifosize / 256) | ((sc->sc_rxfifosize / 256) << 12)); bus_space_write_4(t, h, GEM_RX_BLANKING, (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8); } /* * Reset the transmitter */ int gem_reset_tx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_tx(sc); bus_space_write_4(t, h, GEM_TX_CONFIG, 0); bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); /* Wait till it finishes */ if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0)) aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n"); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ETX */ bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX); bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); /* Wait till it finishes */ if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) { aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n"); return (1); } return (0); } /* * disable receiver. */ int gem_disable_rx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); cfg &= ~GEM_MAC_RX_ENABLE; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg); bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); /* Wait for it to finish */ return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); } /* * disable transmitter. */ int gem_disable_tx(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG); cfg &= ~GEM_MAC_TX_ENABLE; bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg); bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); /* Wait for it to finish */ return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); } /* * Initialize interface. */ int gem_meminit(struct gem_softc *sc) { struct gem_rxsoft *rxs; int i, error; /* * Initialize the transmit descriptor ring. */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); for (i = 0; i < GEM_NTXDESC; i++) { sc->sc_txdescs[i].gd_flags = 0; sc->sc_txdescs[i].gd_addr = 0; } GEM_CDTXSYNC(sc, 0, GEM_NTXDESC, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->sc_txfree = GEM_NTXDESC-1; sc->sc_txnext = 0; sc->sc_txwin = 0; /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = gem_add_rxbuf(sc, i)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate or map rx " "buffer %d, error = %d\n", i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ gem_rxdrain(sc); return (1); } } else GEM_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; sc->sc_meminited = 1; GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); return (0); } static int gem_ringsize(int sz) { switch (sz) { case 32: return GEM_RING_SZ_32; case 64: return GEM_RING_SZ_64; case 128: return GEM_RING_SZ_128; case 256: return GEM_RING_SZ_256; case 512: return GEM_RING_SZ_512; case 1024: return GEM_RING_SZ_1024; case 2048: return GEM_RING_SZ_2048; case 4096: return GEM_RING_SZ_4096; case 8192: return GEM_RING_SZ_8192; default: printf("gem: invalid Receive Descriptor ring size %d\n", sz); return GEM_RING_SZ_32; } } /* * Start PCS */ void gem_pcs_start(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t v; #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n"); #endif /* * Set up. We must disable the MII before modifying the * GEM_MII_ANAR register */ if (sc->sc_flags & GEM_SERDES) { bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_SERDES); bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, GEM_MII_SLINK_LOOPBACK); } else { bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_SERIAL); bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0); } bus_space_write_4(t, h, GEM_MII_CONFIG, 0); v = bus_space_read_4(t, h, GEM_MII_ANAR); v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE); if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO) v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX); else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) { v |= GEM_MII_ANEG_FUL_DUPLX; v &= ~GEM_MII_ANEG_HLF_DUPLX; } else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) { v &= ~GEM_MII_ANEG_FUL_DUPLX; v |= GEM_MII_ANEG_HLF_DUPLX; } /* Configure link. */ bus_space_write_4(t, h, GEM_MII_ANAR, v); bus_space_write_4(t, h, GEM_MII_CONTROL, GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE); gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT); /* Start the 10 second timer */ callout_schedule(&sc->sc_tick_ch, hz * 10); } /* * Stop PCS */ void gem_pcs_stop(struct gem_softc *sc, int disable) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n"); #endif /* Tell link partner that we're going away */ bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF); /* * Disable PCS MII. The documentation suggests that setting * GEM_MII_CONFIG_ENABLE to zero and then restarting auto- * negotiation will shut down the link. However, it appears * that we also need to unset the datapath mode. */ bus_space_write_4(t, h, GEM_MII_CONFIG, 0); bus_space_write_4(t, h, GEM_MII_CONTROL, GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); bus_space_write_4(t, h, GEM_MII_CONFIG, 0); if (disable) { if (sc->sc_flags & GEM_SERDES) bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, GEM_MII_SLINK_POWER_OFF); else bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF); } sc->sc_flags &= ~GEM_LINK; sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; sc->sc_mii.mii_media_status = IFM_AVALID; } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ int gem_init(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; int rc = 0, s; u_int max_frame_size; uint32_t v; s = splnet(); DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev))); /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ gem_stop(ifp, 0); gem_reset(sc); DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev))); /* Re-initialize the MIF */ gem_mifinit(sc); /* Set up correct datapath for non-SERDES/Serialink */ if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && sc->sc_variant != GEM_SUN_ERI) bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); /* Call MI reset function if any */ if (sc->sc_hwreset) (*sc->sc_hwreset)(sc); /* step 3. Setup data structures in host memory */ if (gem_meminit(sc) != 0) { splx(s); return 1; } /* step 4. TX MAC registers & counters */ gem_init_regs(sc); max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU); max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN; if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) max_frame_size += ETHER_VLAN_ENCAP_LEN; bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, max_frame_size|/* burst size */(0x2000<<16)); /* step 5. RX MAC registers & counters */ gem_setladrf(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses */ bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32); bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32); bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); /* step 8. Global Configuration & Interrupt Mask */ gem_inten(sc); bus_space_write_4(t, h, GEM_MAC_RX_MASK, GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT); bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */ bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME); /* step 9. ETX Configuration: use mostly default values */ /* Enable TX DMA */ v = gem_ringsize(GEM_NTXDESC /*XXX*/); bus_space_write_4(t, h, GEM_TX_CONFIG, v | GEM_TX_CONFIG_TXDMA_EN | (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) & GEM_TX_CONFIG_TXFIFO_TH)); bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext); /* step 10. ERX Configuration */ gem_rx_common(sc); /* step 11. Configure Media */ if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && (rc = mii_ifmedia_change(&sc->sc_mii)) != 0) goto out; /* step 12. RX_MAC Configuration Register */ v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); /* step 14. Issue Transmit Pending command */ /* Call MI initialization function if any */ if (sc->sc_hwinit) (*sc->sc_hwinit)(sc); /* step 15. Give the receiver a swift kick */ bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4); if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) /* Configure PCS */ gem_pcs_start(sc); else /* Start the one second timer. */ callout_schedule(&sc->sc_tick_ch, hz); sc->sc_flags &= ~GEM_LINK; ifp->if_flags |= IFF_RUNNING; ifp->if_timer = 0; sc->sc_if_flags = ifp->if_flags; out: splx(s); return (0); } void gem_init_regs(struct gem_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; const u_char *laddr = CLLADDR(ifp->if_sadl); uint32_t v; /* These regs are not cleared on reset */ if (!sc->sc_inited) { /* Load recommended values */ bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00); bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08); bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04); bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); /* Max frame and max burst size */ bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, ETHER_MAX_LEN | (0x2000<<16)); bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07); bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04); bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10); bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088); bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED, ((laddr[5]<<8)|laddr[4])&0x3ff); /* Secondary MAC addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, GEM_MAC_ADDR3, 0); bus_space_write_4(t, h, GEM_MAC_ADDR4, 0); bus_space_write_4(t, h, GEM_MAC_ADDR5, 0); /* MAC control addr set to 01:80:c2:00:00:01 */ bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001); bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200); bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180); /* MAC filter addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0); bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0); bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0); bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0); bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0); sc->sc_inited = 1; } /* Counters need to be zeroed */ bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0); bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); /* Set XOFF PAUSE time. */ bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0); /* * Set the internal arbitration to "infinite" bursts of the * maximum length of 31 * 64 bytes so DMA transfers aren't * split up in cache line size chunks. This greatly improves * especially RX performance. * Enable silicon bug workarounds for the Apple variants. */ bus_space_write_4(t, h, GEM_CONFIG, GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT | ((sc->sc_flags & GEM_PCI) ? GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ? GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0)); /* * Set the station address. */ bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]); bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]); bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]); /* * Enable MII outputs. Enable GMII if there is a gigabit PHY. */ sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG); v = GEM_MAC_XIF_TX_MII_ENA; if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { v |= GEM_MAC_XIF_FDPLX_LED; if (sc->sc_flags & GEM_GIGABIT) v |= GEM_MAC_XIF_GMII_MODE; } } else { v |= GEM_MAC_XIF_GMII_MODE; } bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v); } #ifdef GEM_DEBUG static void gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc) { int i; for (i = firstdesc;; i = GEM_NEXTTX(i)) { printf("descriptor %d:\t", i); printf("gd_flags: 0x%016" PRIx64 "\t", GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags)); printf("gd_addr: 0x%016" PRIx64 "\n", GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr)); if (i == lastdesc) break; } } #endif static void gem_start(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; struct mbuf *m0, *m; struct gem_txsoft *txs; bus_dmamap_t dmamap; int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg; #ifdef GEM_DEBUG int otxnext; #endif uint64_t flags = 0; if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING) return; /* * Remember the previous number of free descriptors and * the first descriptor we'll use. */ ofree = sc->sc_txfree; #ifdef GEM_DEBUG otxnext = sc->sc_txnext; #endif DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n", device_xname(sc->sc_dev), ofree, otxnext)); /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ #ifdef INET next: #endif while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && sc->sc_txfree != 0) { /* * Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; m = NULL; dmamap = txs->txs_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the allotted number of segments, or we were * short on resources. In this case, we'll copy and try * again. */ if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 || (m0->m_pkthdr.len < ETHER_MIN_TX && dmamap->dm_nsegs == GEM_NTXSEGS)) { if (m0->m_pkthdr.len > MCLBYTES) { aprint_error_dev(sc->sc_dev, "unable to allocate jumbo Tx cluster\n"); IFQ_DEQUEUE(&ifp->if_snd, m0); m_freem(m0); continue; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n"); break; } MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { aprint_error_dev(sc->sc_dev, "unable to allocate Tx cluster\n"); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, error = %d\n", error); break; } } /* * Ensure we have enough descriptors free to describe * the packet. */ if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ? (sc->sc_txfree - 1) : sc->sc_txfree)) { /* * Not enough free descriptors to transmit this * packet. */ bus_dmamap_unload(sc->sc_dmatag, dmamap); m_freem(m); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m != NULL) { m_freem(m0); m0 = m; } /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Initialize the transmit descriptors. */ firsttx = sc->sc_txnext; for (nexttx = firsttx, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = GEM_NEXTTX(nexttx)) { /* * If this is the first descriptor we're * enqueueing, set the start of packet flag, * and the checksum stuff if we want the hardware * to do it. */ flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE; if (nexttx == firsttx) { flags |= GEM_TD_START_OF_PACKET; #ifdef INET /* h/w checksum */ if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 && m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { struct ether_header *eh; uint16_t offset, start; eh = mtod(m0, struct ether_header *); switch (ntohs(eh->ether_type)) { case ETHERTYPE_IP: start = ETHER_HDR_LEN; break; case ETHERTYPE_VLAN: start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; break; default: /* unsupported, drop it */ bus_dmamap_unload(sc->sc_dmatag, dmamap); m_freem(m0); goto next; } start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start; flags |= (start << GEM_TD_CXSUM_STARTSHFT) | (offset << GEM_TD_CXSUM_STUFFSHFT) | GEM_TD_CXSUM_ENABLE; } #endif if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) { sc->sc_txwin = 0; flags |= GEM_TD_INTERRUPT_ME; } } sc->sc_txdescs[nexttx].gd_addr = GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr); if (seg == dmamap->dm_nsegs - 1) { flags |= GEM_TD_END_OF_PACKET; } else { /* last flag set outside of loop */ sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags); } lasttx = nexttx; } if (m0->m_pkthdr.len < ETHER_MIN_TX) { /* add padding buffer at end of chain */ flags &= ~GEM_TD_END_OF_PACKET; sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags); sc->sc_txdescs[nexttx].gd_addr = GEM_DMA_WRITE(sc, sc->sc_nulldmamap->dm_segs[0].ds_addr); flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) & GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET; lasttx = nexttx; nexttx = GEM_NEXTTX(nexttx); seg++; } sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags); KASSERT(lasttx != -1); /* * Store a pointer to the packet so we can free it later, * and remember what txdirty will be once the packet is * done. */ txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; txs->txs_ndescs = seg; #ifdef GEM_DEBUG if (ifp->if_flags & IFF_DEBUG) { printf(" gem_start %p transmit chain:\n", txs); gem_txsoft_print(sc, txs->txs_firstdesc, txs->txs_lastdesc); } #endif /* Sync the descriptors we're using. */ GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Advance the tx pointer. */ sc->sc_txfree -= txs->txs_ndescs; sc->sc_txnext = nexttx; SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); /* * Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (sc->sc_txfree != ofree) { DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", device_xname(sc->sc_dev), lasttx, otxnext)); /* * The entire packet chain is set up. * Kick the transmitter. */ DPRINTF(sc, ("%s: gem_start: kicking tx %d\n", device_xname(sc->sc_dev), nexttx)); bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK, sc->sc_txnext); /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; DPRINTF(sc, ("%s: gem_start: watchdog %d\n", device_xname(sc->sc_dev), ifp->if_timer)); } } /* * Transmit interrupt. */ int gem_tint(struct gem_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_h1; struct gem_txsoft *txs; int txlast; int progress = 0; uint32_t v; net_stat_ref_t nsr = IF_STAT_GETREF(ifp); DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev))); /* Unload collision counters ... */ v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT); if_statadd_ref(ifp, nsr, if_collisions, v + bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) + bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT)); if_statadd_ref(ifp, nsr, if_oerrors, v); /* ... then clear the hardware counters. */ bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0); /* * Go through our Tx list and free mbufs for those * frames that have been transmitted. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { /* * In theory, we could harvest some descriptors before * the ring is empty, but that's a bit complicated. * * GEM_TX_COMPLETION points to the last descriptor * processed +1. * * Let's assume that the NIC writes back to the Tx * descriptors before it updates the completion * register. If the NIC has posted writes to the * Tx descriptors, PCI ordering requires that the * posted writes flush to RAM before the register-read * finishes. So let's read the completion register, * before syncing the descriptors, so that we * examine Tx descriptors that are at least as * current as the completion register. */ txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION); DPRINTF(sc, ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n", txs->txs_lastdesc, txlast)); if (txs->txs_firstdesc <= txs->txs_lastdesc) { if (txlast >= txs->txs_firstdesc && txlast <= txs->txs_lastdesc) break; } else if (txlast >= txs->txs_firstdesc || txlast <= txs->txs_lastdesc) break; GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #ifdef GEM_DEBUG /* XXX DMA synchronization? */ if (ifp->if_flags & IFF_DEBUG) { printf(" txsoft %p transmit chain:\n", txs); gem_txsoft_print(sc, txs->txs_firstdesc, txs->txs_lastdesc); } #endif DPRINTF(sc, ("gem_tint: releasing a desc\n")); SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); sc->sc_txfree += txs->txs_ndescs; bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); if_statinc_ref(ifp, nsr, if_opackets); progress = 1; } IF_STAT_PUTREF(ifp); #if 0 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x " "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n", bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE), ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_DATA_PTR_HI) << 32) | bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_DATA_PTR_LO), bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION))); #endif if (progress) { if (sc->sc_txfree == GEM_NTXDESC - 1) sc->sc_txwin = 0; ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5; if_schedule_deferred_start(ifp); } DPRINTF(sc, ("%s: gem_tint: watchdog %d\n", device_xname(sc->sc_dev), ifp->if_timer)); return (1); } /* * Receive interrupt. */ int gem_rint(struct gem_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; struct gem_rxsoft *rxs; struct mbuf *m; uint64_t rxstat; uint32_t rxcomp; int i, len, progress = 0; DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev))); /* * Ignore spurious interrupt that sometimes occurs before * we are set up when we network boot. */ if (!sc->sc_meminited) return 1; /* * Read the completion register once. This limits * how long the following loop can execute. */ rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION); /* * XXX Read the lastrx only once at the top for speed. */ DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n", sc->sc_rxptr, rxcomp)); /* * Go into the loop at least once. */ for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp; i = GEM_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; GEM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags); if (rxstat & GEM_RD_OWN) { GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); /* * We have processed all of the receive buffers. */ break; } progress++; if (rxstat & GEM_RD_BAD_CRC) { if_statinc(ifp, if_ierrors); DPRINTF(sc, ("%s: receive error: CRC error\n", device_xname(sc->sc_dev))); GEM_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); #ifdef GEM_DEBUG if (ifp->if_flags & IFF_DEBUG) { printf(" rxsoft %p descriptor %d: ", rxs, i); printf("gd_flags: 0x%016llx\t", (long long) GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags)); printf("gd_addr: 0x%016llx\n", (long long) GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr)); } #endif /* No errors; receive the packet. */ len = GEM_RD_BUFLEN(rxstat); /* * Allocate a new mbuf cluster. If that fails, we are * out of memory, and must drop the packet and recycle * the buffer that's already attached to this descriptor. */ m = rxs->rxs_mbuf; if (gem_add_rxbuf(sc, i) != 0) { GEM_COUNTER_INCR(sc, sc_ev_rxnobuf); if_statinc(ifp, if_ierrors); aprint_error_dev(sc->sc_dev, "receive error: RX no buffer space\n"); GEM_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } m->m_data += 2; /* We're already off by two */ m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = len; #ifdef INET /* hardware checksum */ if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { struct ether_header *eh; struct ip *ip; int32_t hlen, pktlen; if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) { pktlen = m->m_pkthdr.len - ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN; eh = (struct ether_header *) (mtod(m, char *) + ETHER_VLAN_ENCAP_LEN); } else { pktlen = m->m_pkthdr.len - ETHER_HDR_LEN; eh = mtod(m, struct ether_header *); } if (ntohs(eh->ether_type) != ETHERTYPE_IP) goto swcsum; ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN); /* IPv4 only */ if (ip->ip_v != IPVERSION) goto swcsum; hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) goto swcsum; /* * bail if too short, has random trailing garbage, * truncated, fragment, or has ethernet pad. */ if ((ntohs(ip->ip_len) < hlen) || (ntohs(ip->ip_len) != pktlen) || (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) goto swcsum; switch (ip->ip_p) { case IPPROTO_TCP: if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4)) goto swcsum; if (pktlen < (hlen + sizeof(struct tcphdr))) goto swcsum; m->m_pkthdr.csum_flags = M_CSUM_TCPv4; break; case IPPROTO_UDP: /* FALLTHROUGH */ default: goto swcsum; } /* the uncomplemented sum is expected */ m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM; /* if the pkt had ip options, we have to deduct them */ if (hlen > sizeof(struct ip)) { uint16_t *opts; uint32_t optsum, temp; optsum = 0; temp = hlen - sizeof(struct ip); opts = (uint16_t *) ((char *) ip + sizeof(struct ip)); while (temp > 1) { optsum += ntohs(*opts++); temp -= 2; } while (optsum >> 16) optsum = (optsum >> 16) + (optsum & 0xffff); /* Deduct ip opts sum from hwsum. */ m->m_pkthdr.csum_data += (uint16_t)~optsum; while (m->m_pkthdr.csum_data >> 16) m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data >> 16) + (m->m_pkthdr.csum_data & 0xffff); } m->m_pkthdr.csum_flags |= M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR; } else swcsum: m->m_pkthdr.csum_flags = 0; #endif /* Pass it on. */ if_percpuq_enqueue(ifp->if_percpuq, m); } if (progress) { /* Update the receive pointer. */ if (i == sc->sc_rxptr) { GEM_COUNTER_INCR(sc, sc_ev_rxfull); #ifdef GEM_DEBUG if (ifp->if_flags & IFF_DEBUG) printf("%s: rint: ring wrap\n", device_xname(sc->sc_dev)); #endif } sc->sc_rxptr = i; bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i)); } #ifdef GEM_COUNTERS if (progress <= 4) { GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]); } else if (progress < 32) { if (progress < 16) GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]); else GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]); } else { if (progress < 64) GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]); else GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]); } #endif DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION))); /* Read error counters ... */ if_statadd(ifp, if_ierrors, bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) + bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) + bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) + bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL)); /* ... then clear the hardware counters. */ bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); return (1); } /* * gem_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int gem_add_rxbuf(struct gem_softc *sc, int idx) { struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } #ifdef GEM_DEBUG /* bzero the packet to check DMA */ memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); #endif if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", idx, error); panic("gem_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); GEM_INIT_RXDESC(sc, idx); return (0); } int gem_eint(struct gem_softc *sc, u_int status) { char bits[128]; uint32_t r, v; if ((status & GEM_INTR_MIF) != 0) { printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev)); return (1); } if ((status & GEM_INTR_RX_TAG_ERR) != 0) { gem_reset_rxdma(sc); return (1); } if (status & GEM_INTR_BERR) { if (sc->sc_flags & GEM_PCI) r = GEM_ERROR_STATUS; else r = GEM_SBUS_ERROR_STATUS; bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n", v); return (1); } snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); return (1); } /* * PCS interrupts. * We should receive these when the link status changes, but sometimes * we don't receive them for link up. We compensate for this in the * gem_tick() callout. */ int gem_pint(struct gem_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t v, v2; /* * Clear the PCS interrupt from GEM_STATUS. The PCS register is * latched, so we have to read it twice. There is only one bit in * use, so the value is meaningless. */ bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); if ((ifp->if_flags & IFF_UP) == 0) return 1; if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) return 1; v = bus_space_read_4(t, h, GEM_MII_STATUS); /* If we see remote fault, our link partner is probably going away */ if ((v & GEM_MII_STATUS_REM_FLT) != 0) { gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0); v = bus_space_read_4(t, h, GEM_MII_STATUS); /* Otherwise, we may need to wait after auto-negotiation completes */ } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) == GEM_MII_STATUS_ANEG_CPT) { gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS); v = bus_space_read_4(t, h, GEM_MII_STATUS); } if ((v & GEM_MII_STATUS_LINK_STS) != 0) { if (sc->sc_flags & GEM_LINK) { return 1; } callout_stop(&sc->sc_tick_ch); v = bus_space_read_4(t, h, GEM_MII_ANAR); v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR); sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX; sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE; v &= v2; if (v & GEM_MII_ANEG_FUL_DUPLX) { sc->sc_mii.mii_media_active |= IFM_FDX; #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "link up: full duplex\n"); #endif } else if (v & GEM_MII_ANEG_HLF_DUPLX) { sc->sc_mii.mii_media_active |= IFM_HDX; #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "link up: half duplex\n"); #endif } else { #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "duplex mismatch\n"); #endif } gem_statuschange(sc); } else { if ((sc->sc_flags & GEM_LINK) == 0) { return 1; } sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; sc->sc_mii.mii_media_status = IFM_AVALID; #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "link down\n"); #endif gem_statuschange(sc); /* Start the 10 second timer */ callout_schedule(&sc->sc_tick_ch, hz * 10); } return 1; } int gem_intr(void *v) { struct gem_softc *sc = v; struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t status; int r = 0; #ifdef GEM_DEBUG char bits[128]; #endif /* XXX We should probably mask out interrupts until we're done */ sc->sc_ev_intr.ev_count++; status = bus_space_read_4(t, h, GEM_STATUS); #ifdef GEM_DEBUG snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); #endif DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n", device_xname(sc->sc_dev), (status >> 19), bits)); if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0) r |= gem_eint(sc, status); /* We don't bother with GEM_INTR_TX_DONE */ if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) { GEM_COUNTER_INCR(sc, sc_ev_txint); r |= gem_tint(sc); } if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) { GEM_COUNTER_INCR(sc, sc_ev_rxint); r |= gem_rint(sc); } /* We should eventually do more than just print out error stats. */ if (status & GEM_INTR_TX_MAC) { int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS); if (txstat & ~GEM_MAC_TX_XMIT_DONE) printf("%s: MAC tx fault, status %x\n", device_xname(sc->sc_dev), txstat); if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) gem_init(ifp); } if (status & GEM_INTR_RX_MAC) { int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS); /* * At least with GEM_SUN_GEM and some GEM_SUN_ERI * revisions GEM_MAC_RX_OVERFLOW happen often due to a * silicon bug so handle them silently. So if we detect * an RX FIFO overflow, we fire off a timer, and check * whether we're still making progress by looking at the * RX FIFO write and read pointers. */ if (rxstat & GEM_MAC_RX_OVERFLOW) { if_statinc(ifp, if_ierrors); GEM_COUNTER_INCR(sc, sc_ev_rxoverflow); #ifdef GEM_DEBUG aprint_error_dev(sc->sc_dev, "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)); #endif sc->sc_rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR); sc->sc_rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR); callout_schedule(&sc->sc_rx_watchdog, 400); } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) printf("%s: MAC rx fault, status 0x%02x\n", device_xname(sc->sc_dev), rxstat); } if (status & GEM_INTR_PCS) { r |= gem_pint(sc); } /* Do we need to do anything with these? if ((status & GEM_MAC_CONTROL_STATUS) != 0) { status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS); if ((status2 & GEM_MAC_PAUSED) != 0) aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n", GEM_MAC_PAUSE_TIME(status2)); if ((status2 & GEM_MAC_PAUSE) != 0) aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n"); if ((status2 & GEM_MAC_RESUME) != 0) aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n"); } if ((status & GEM_INTR_MIF) != 0) aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n"); */ rnd_add_uint32(&sc->rnd_source, status); return (r); } void gem_rx_watchdog(void *arg) { struct gem_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t rx_fifo_wr_ptr; uint32_t rx_fifo_rd_ptr; uint32_t state; if ((ifp->if_flags & IFF_RUNNING) == 0) { aprint_error_dev(sc->sc_dev, "receiver not running\n"); return; } rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR); rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR); state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE); if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW && ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) || ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) && (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr)))) { /* * The RX state machine is still in overflow state and * the RX FIFO write and read pointers seem to be * stuck. Whack the chip over the head to get things * going again. */ aprint_error_dev(sc->sc_dev, "receiver stuck in overflow, resetting\n"); gem_init(ifp); } else { int needreset = 1; if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) { DPRINTF(sc, ("%s: rx_watchdog: not in overflow state: 0x%x\n", device_xname(sc->sc_dev), state)); } if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) { DPRINTF(sc, ("%s: rx_watchdog: wr & rd ptr different\n", device_xname(sc->sc_dev))); needreset = 0; } if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) { DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n", device_xname(sc->sc_dev))); needreset = 0; } if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) { DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n", device_xname(sc->sc_dev))); needreset = 0; } if (needreset) { aprint_error_dev(sc->sc_dev, "rx_watchdog: resetting anyway\n"); gem_init(ifp); } } } void gem_watchdog(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x " "GEM_MAC_RX_CONFIG %x\n", bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG), bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS), bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG))); log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); if_statinc(ifp, if_oerrors); /* Try to get more packets going. */ gem_init(ifp); gem_start(ifp); } /* * Initialize the MII Management Interface */ void gem_mifinit(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h1; /* Configure the MIF in frame mode */ sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG); sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA; bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config); } /* * MII interface * * The GEM MII interface supports at least three different operating modes: * * Bitbang mode is implemented using data, clock and output enable registers. * * Frame mode is implemented by loading a complete frame into the frame * register and polling the valid bit for completion. * * Polling mode uses the frame register but completion is indicated by * an interrupt. * */ static int gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val) { struct gem_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h1; int n; uint32_t v; #ifdef GEM_DEBUG1 if (sc->sc_debug) printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg); #endif /* Construct the frame command */ v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) | GEM_MIF_FRAME_READ; bus_space_write_4(t, mif, GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) { *val = v & GEM_MIF_FRAME_DATA; return 0; } } printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } static int gem_mii_writereg(device_t self, int phy, int reg, uint16_t val) { struct gem_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mif = sc->sc_h1; int n; uint32_t v; #ifdef GEM_DEBUG1 if (sc->sc_debug) printf("gem_mii_writereg: PHY %d reg %d val %x\n", phy, reg, val); #endif /* Construct the frame command */ v = GEM_MIF_FRAME_WRITE | (phy << GEM_MIF_PHY_SHIFT) | (reg << GEM_MIF_REG_SHIFT) | (val & GEM_MIF_FRAME_DATA); bus_space_write_4(t, mif, GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return 0; } printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); return ETIMEDOUT; } static void gem_mii_statchg(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; #ifdef GEM_DEBUG int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); #endif #ifdef GEM_DEBUG if (sc->sc_debug) printf("gem_mii_statchg: status change: phy = %d\n", sc->sc_phys[instance]); #endif gem_statuschange(sc); } /* * Common status change for gem_mii_statchg() and gem_pint() */ void gem_statuschange(struct gem_softc* sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t mac = sc->sc_h1; int gigabit; uint32_t rxcfg, txcfg, v; if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 && IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) sc->sc_flags |= GEM_LINK; else sc->sc_flags &= ~GEM_LINK; if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) gigabit = 1; else gigabit = 0; /* * The configuration done here corresponds to the steps F) and * G) and as far as enabling of RX and TX MAC goes also step H) * of the initialization sequence outlined in section 3.2.1 of * the GEM Gigabit Ethernet ASIC Specification. */ rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG); rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE); txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT; if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS; else if (gigabit) { rxcfg |= GEM_MAC_RX_CARR_EXTEND; txcfg |= GEM_MAC_RX_CARR_EXTEND; } bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0); bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)) aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n"); bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg); bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0); bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)) aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n"); bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg); v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) & ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE); bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v); if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 && gigabit != 0) bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, GEM_MAC_SLOT_TIME_CARR_EXTEND); else bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, GEM_MAC_SLOT_TIME_NORMAL); /* XIF Configuration */ if (sc->sc_flags & GEM_LINK) v = GEM_MAC_XIF_LINK_LED; else v = 0; v |= GEM_MAC_XIF_TX_MII_ENA; /* If an external transceiver is connected, enable its MII drivers */ sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG); if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) { if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) { if (gigabit) v |= GEM_MAC_XIF_GMII_MODE; else v &= ~GEM_MAC_XIF_GMII_MODE; } else /* Internal MII needs buf enable */ v |= GEM_MAC_XIF_MII_BUF_ENA; /* MII needs echo disable if half duplex. */ if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) /* turn on full duplex LED */ v |= GEM_MAC_XIF_FDPLX_LED; else /* half duplex -- disable echo */ v |= GEM_MAC_XIF_ECHO_DISABL; } else { if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) v |= GEM_MAC_XIF_FDPLX_LED; v |= GEM_MAC_XIF_GMII_MODE; } bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v); if ((ifp->if_flags & IFF_RUNNING) != 0 && (sc->sc_flags & GEM_LINK) != 0) { bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg | GEM_MAC_TX_ENABLE); bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg | GEM_MAC_RX_ENABLE); } } int gem_ser_mediachange(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; u_int s, t; if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER) return EINVAL; s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media); if (s == IFM_AUTO) { if (sc->sc_mii_media != s) { #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "setting media to auto\n"); #endif sc->sc_mii_media = s; if (ifp->if_flags & IFF_UP) { gem_pcs_stop(sc, 0); gem_pcs_start(sc); } } return 0; } if (s == IFM_1000_SX) { t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media) & (IFM_FDX | IFM_HDX); if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) { sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX); sc->sc_mii_media |= t; #ifdef GEM_DEBUG aprint_debug_dev(sc->sc_dev, "setting media to 1000baseSX-%s\n", t == IFM_FDX ? "FDX" : "HDX"); #endif if (ifp->if_flags & IFF_UP) { gem_pcs_stop(sc, 0); gem_pcs_start(sc); } } return 0; } return EINVAL; } void gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct gem_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_UP) == 0) return; ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } static int gem_ifflags_cb(struct ethercom *ec) { struct ifnet *ifp = &ec->ec_if; struct gem_softc *sc = ifp->if_softc; u_short change = ifp->if_flags ^ sc->sc_if_flags; if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) return ENETRESET; else if ((change & IFF_PROMISC) != 0) gem_setladrf(sc); return 0; } /* * Process an ioctl request. */ int gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) { struct gem_softc *sc = ifp->if_softc; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { error = 0; if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the hardware filter * accordingly. */ gem_setladrf(sc); } } /* Try to get things going again */ if (ifp->if_flags & IFF_UP) gem_start(ifp); splx(s); return (error); } static void gem_inten(struct gem_softc *sc) { bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t v; if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) v = GEM_INTR_PCS; else v = GEM_INTR_MIF; bus_space_write_4(t, h, GEM_INTMASK, ~(GEM_INTR_TX_INTME | GEM_INTR_TX_EMPTY | GEM_INTR_TX_MAC | GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF | GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL | GEM_INTR_BERR | v)); } bool gem_resume(device_t self, const pmf_qual_t *qual) { struct gem_softc *sc = device_private(self); gem_inten(sc); return true; } bool gem_suspend(device_t self, const pmf_qual_t *qual) { struct gem_softc *sc = device_private(self); bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0); return true; } bool gem_shutdown(device_t self, int howto) { struct gem_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ethercom.ec_if; gem_stop(ifp, 1); return true; } /* * Set up the logical address filter. */ void gem_setladrf(struct gem_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; struct ether_multistep step; bus_space_tag_t t = sc->sc_bustag; bus_space_handle_t h = sc->sc_h1; uint32_t crc; uint32_t hash[16]; uint32_t v; int i; /* Get current RX configuration */ v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); /* * Turn off promiscuous mode, promiscuous group mode (all multicast), * and hash filter. Depending on the case, the right bit will be * enabled. */ v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER | GEM_MAC_RX_PROMISC_GRP); if ((ifp->if_flags & IFF_PROMISC) != 0) { /* Turn on promiscuous mode */ v |= GEM_MAC_RX_PROMISCUOUS; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 8 bits as an * index into the 256 bit logical address filter. The high order 4 * bits selects the word, while the other 4 bits select the bit within * the word (where bit 0 is the MSB). */ /* Clear hash table */ memset(hash, 0, sizeof(hash)); ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) * XXX should use the address filters for this */ ifp->if_flags |= IFF_ALLMULTI; v |= GEM_MAC_RX_PROMISC_GRP; ETHER_UNLOCK(ec); goto chipit; } /* Get the LE CRC32 of the address */ crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo)); /* Just want the 8 most significant bits. */ crc >>= 24; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (15 - (crc & 15)); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); v |= GEM_MAC_RX_HASH_FILTER; ifp->if_flags &= ~IFF_ALLMULTI; /* Now load the hash table into the chip (if we are using it) */ for (i = 0; i < 16; i++) { bus_space_write_4(t, h, GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0), hash[i]); } chipit: sc->sc_if_flags = ifp->if_flags; bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); }