/* Threads compatibility routines for libgcc2 and libobjc. */
/* Compile this one with gcc. */
/* Copyright (C) 1997-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
. */
#ifndef GCC_GTHR_POSIX_H
#define GCC_GTHR_POSIX_H
/* POSIX threads specific definitions.
Easy, since the interface is just one-to-one mapping. */
#define __GTHREADS 1
#define __GTHREADS_CXX0X 1
#include
#if ((defined(_LIBOBJC) || defined(_LIBOBJC_WEAK)) \
|| !defined(_GTHREAD_USE_MUTEX_TIMEDLOCK))
# include
# if defined(_POSIX_TIMEOUTS) && _POSIX_TIMEOUTS >= 0
# define _GTHREAD_USE_MUTEX_TIMEDLOCK 1
# else
# define _GTHREAD_USE_MUTEX_TIMEDLOCK 0
# endif
#endif
typedef pthread_t __gthread_t;
typedef pthread_key_t __gthread_key_t;
typedef pthread_once_t __gthread_once_t;
typedef pthread_mutex_t __gthread_mutex_t;
typedef pthread_mutex_t __gthread_recursive_mutex_t;
typedef pthread_cond_t __gthread_cond_t;
typedef struct timespec __gthread_time_t;
/* POSIX like conditional variables are supported. Please look at comments
in gthr.h for details. */
#define __GTHREAD_HAS_COND 1
#define __GTHREAD_MUTEX_INIT PTHREAD_MUTEX_INITIALIZER
#define __GTHREAD_MUTEX_INIT_FUNCTION __gthread_mutex_init_function
#define __GTHREAD_ONCE_INIT PTHREAD_ONCE_INIT
#if defined(PTHREAD_RECURSIVE_MUTEX_INITIALIZER)
#define __GTHREAD_RECURSIVE_MUTEX_INIT PTHREAD_RECURSIVE_MUTEX_INITIALIZER
#elif defined(PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP)
#define __GTHREAD_RECURSIVE_MUTEX_INIT PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP
#else
#define __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION __gthread_recursive_mutex_init_function
#endif
#define __GTHREAD_COND_INIT PTHREAD_COND_INITIALIZER
#define __GTHREAD_TIME_INIT {0,0}
#ifdef _GTHREAD_USE_MUTEX_INIT_FUNC
# undef __GTHREAD_MUTEX_INIT
#endif
#ifdef _GTHREAD_USE_RECURSIVE_MUTEX_INIT_FUNC
# undef __GTHREAD_RECURSIVE_MUTEX_INIT
# undef __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION
# define __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION __gthread_recursive_mutex_init_function
#endif
#ifdef _GTHREAD_USE_COND_INIT_FUNC
# undef __GTHREAD_COND_INIT
# define __GTHREAD_COND_INIT_FUNCTION __gthread_cond_init_function
#endif
#if SUPPORTS_WEAK && GTHREAD_USE_WEAK
# ifndef __gthrw_pragma
# define __gthrw_pragma(pragma)
# endif
# define __gthrw2(name,name2,type) \
static __typeof(type) name \
__attribute__ ((__weakref__(#name2), __copy__ (type))); \
__gthrw_pragma(weak type)
# define __gthrw_(name) __gthrw_ ## name
#else
# define __gthrw2(name,name2,type)
# define __gthrw_(name) name
#endif
/* Typically, __gthrw_foo is a weak reference to symbol foo. */
#define __gthrw(name) __gthrw2(__gthrw_ ## name,name,name)
__gthrw(pthread_once)
__gthrw(pthread_getspecific)
__gthrw(pthread_setspecific)
__gthrw(pthread_create)
__gthrw(pthread_join)
__gthrw(pthread_equal)
__gthrw(pthread_self)
__gthrw(pthread_detach)
#ifndef __BIONIC__
__gthrw(pthread_cancel)
#endif
__gthrw(sched_yield)
__gthrw(pthread_mutex_lock)
__gthrw(pthread_mutex_trylock)
#if _GTHREAD_USE_MUTEX_TIMEDLOCK
__gthrw(pthread_mutex_timedlock)
#endif
__gthrw(pthread_mutex_unlock)
__gthrw(pthread_mutex_init)
__gthrw(pthread_mutex_destroy)
__gthrw(pthread_cond_init)
__gthrw(pthread_cond_broadcast)
__gthrw(pthread_cond_signal)
__gthrw(pthread_cond_wait)
__gthrw(pthread_cond_timedwait)
__gthrw(pthread_cond_destroy)
__gthrw(pthread_key_create)
__gthrw(pthread_key_delete)
__gthrw(pthread_mutexattr_init)
__gthrw(pthread_mutexattr_settype)
__gthrw(pthread_mutexattr_destroy)
#if defined(_LIBOBJC) || defined(_LIBOBJC_WEAK)
/* Objective-C. */
__gthrw(pthread_exit)
#ifdef _POSIX_PRIORITY_SCHEDULING
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
__gthrw(sched_get_priority_max)
__gthrw(sched_get_priority_min)
#endif /* _POSIX_THREAD_PRIORITY_SCHEDULING */
#endif /* _POSIX_PRIORITY_SCHEDULING */
__gthrw(pthread_attr_destroy)
__gthrw(pthread_attr_init)
__gthrw(pthread_attr_setdetachstate)
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
__gthrw(pthread_getschedparam)
__gthrw(pthread_setschedparam)
#endif /* _POSIX_THREAD_PRIORITY_SCHEDULING */
#endif /* _LIBOBJC || _LIBOBJC_WEAK */
#if SUPPORTS_WEAK && GTHREAD_USE_WEAK
/* On Solaris 2.6 up to 9, the libc exposes a POSIX threads interface even if
-pthreads is not specified. The functions are dummies and most return an
error value. However pthread_once returns 0 without invoking the routine
it is passed so we cannot pretend that the interface is active if -pthreads
is not specified. On Solaris 2.5.1, the interface is not exposed at all so
we need to play the usual game with weak symbols. On Solaris 10 and up, a
working interface is always exposed. On FreeBSD 6 and later, libc also
exposes a dummy POSIX threads interface, similar to what Solaris 2.6 up
to 9 does. FreeBSD >= 700014 even provides a pthread_cancel stub in libc,
which means the alternate __gthread_active_p below cannot be used there.
On NetBSD, linking with pthreads but without calling pthread_create()
makes std::call_once() so we do the same.
*/
#if defined(__FreeBSD__) || (defined(__sun) && defined(__svr4__)) || defined(__NetBSD__)
static volatile int __gthread_active = -1;
static void
__gthread_trigger (void)
{
__gthread_active = 1;
}
static inline int
__gthread_active_p (void)
{
static pthread_mutex_t __gthread_active_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_once_t __gthread_active_once = PTHREAD_ONCE_INIT;
/* Avoid reading __gthread_active twice on the main code path. */
int __gthread_active_latest_value = __gthread_active;
/* This test is not protected to avoid taking a lock on the main code
path so every update of __gthread_active in a threaded program must
be atomic with regard to the result of the test. */
if (__builtin_expect (__gthread_active_latest_value < 0, 0))
{
if (__gthrw_(pthread_once))
{
/* If this really is a threaded program, then we must ensure that
__gthread_active has been set to 1 before exiting this block. */
__gthrw_(pthread_mutex_lock) (&__gthread_active_mutex);
__gthrw_(pthread_once) (&__gthread_active_once, __gthread_trigger);
__gthrw_(pthread_mutex_unlock) (&__gthread_active_mutex);
}
/* Make sure we'll never enter this block again. */
if (__gthread_active < 0)
__gthread_active = 0;
__gthread_active_latest_value = __gthread_active;
}
return __gthread_active_latest_value != 0;
}
#else /* neither FreeBSD nor Solaris nor NetBSD */
/* For a program to be multi-threaded the only thing that it certainly must
be using is pthread_create. However, there may be other libraries that
intercept pthread_create with their own definitions to wrap pthreads
functionality for some purpose. In those cases, pthread_create being
defined might not necessarily mean that libpthread is actually linked
in.
For the GNU C library, we can use a known internal name. This is always
available in the ABI, but no other library would define it. That is
ideal, since any public pthread function might be intercepted just as
pthread_create might be. __pthread_key_create is an "internal"
implementation symbol, but it is part of the public exported ABI. Also,
it's among the symbols that the static libpthread.a always links in
whenever pthread_create is used, so there is no danger of a false
negative result in any statically-linked, multi-threaded program.
For others, we choose pthread_cancel as a function that seems unlikely
to be redefined by an interceptor library. The bionic (Android) C
library does not provide pthread_cancel, so we do use pthread_create
there (and interceptor libraries lose). */
#ifdef __GLIBC__
__gthrw2(__gthrw_(__pthread_key_create),
__pthread_key_create,
pthread_key_create)
# define GTHR_ACTIVE_PROXY __gthrw_(__pthread_key_create)
#elif defined (__BIONIC__)
# define GTHR_ACTIVE_PROXY __gthrw_(pthread_create)
#else
# define GTHR_ACTIVE_PROXY __gthrw_(pthread_cancel)
#endif
static inline int
__gthread_active_p (void)
{
static void *const __gthread_active_ptr
= __extension__ (void *) >HR_ACTIVE_PROXY;
return __gthread_active_ptr != 0;
}
#endif /* FreeBSD or Solaris or NetBSD */
#else /* not SUPPORTS_WEAK */
/* Similar to Solaris, HP-UX 11 for PA-RISC provides stubs for pthread
calls in shared flavors of the HP-UX C library. Most of the stubs
have no functionality. The details are described in the "libc cumulative
patch" for each subversion of HP-UX 11. There are two special interfaces
provided for checking whether an application is linked to a shared pthread
library or not. However, these interfaces aren't available in early
libpthread libraries. We also need a test that works for archive
libraries. We can't use pthread_once as some libc versions call the
init function. We also can't use pthread_create or pthread_attr_init
as these create a thread and thereby prevent changing the default stack
size. The function pthread_default_stacksize_np is available in both
the archive and shared versions of libpthread. It can be used to
determine the default pthread stack size. There is a stub in some
shared libc versions which returns a zero size if pthreads are not
active. We provide an equivalent stub to handle cases where libc
doesn't provide one. */
#if defined(__hppa__) && defined(__hpux__)
static volatile int __gthread_active = -1;
static inline int
__gthread_active_p (void)
{
/* Avoid reading __gthread_active twice on the main code path. */
int __gthread_active_latest_value = __gthread_active;
size_t __s;
if (__builtin_expect (__gthread_active_latest_value < 0, 0))
{
pthread_default_stacksize_np (0, &__s);
__gthread_active = __s ? 1 : 0;
__gthread_active_latest_value = __gthread_active;
}
return __gthread_active_latest_value != 0;
}
#else /* not hppa-hpux */
static inline int
__gthread_active_p (void)
{
return 1;
}
#endif /* hppa-hpux */
#endif /* SUPPORTS_WEAK */
#ifdef _LIBOBJC
/* This is the config.h file in libobjc/ */
#include
#ifdef HAVE_SCHED_H
# include
#endif
/* Key structure for maintaining thread specific storage */
static pthread_key_t _objc_thread_storage;
static pthread_attr_t _objc_thread_attribs;
/* Thread local storage for a single thread */
static void *thread_local_storage = NULL;
/* Backend initialization functions */
/* Initialize the threads subsystem. */
static inline int
__gthread_objc_init_thread_system (void)
{
if (__gthread_active_p ())
{
/* Initialize the thread storage key. */
if (__gthrw_(pthread_key_create) (&_objc_thread_storage, NULL) == 0)
{
/* The normal default detach state for threads is
* PTHREAD_CREATE_JOINABLE which causes threads to not die
* when you think they should. */
if (__gthrw_(pthread_attr_init) (&_objc_thread_attribs) == 0
&& __gthrw_(pthread_attr_setdetachstate) (&_objc_thread_attribs,
PTHREAD_CREATE_DETACHED) == 0)
return 0;
}
}
return -1;
}
/* Close the threads subsystem. */
static inline int
__gthread_objc_close_thread_system (void)
{
if (__gthread_active_p ()
&& __gthrw_(pthread_key_delete) (_objc_thread_storage) == 0
&& __gthrw_(pthread_attr_destroy) (&_objc_thread_attribs) == 0)
return 0;
return -1;
}
/* Backend thread functions */
/* Create a new thread of execution. */
static inline objc_thread_t
__gthread_objc_thread_detach (void (*func)(void *), void *arg)
{
objc_thread_t thread_id;
pthread_t new_thread_handle;
if (!__gthread_active_p ())
return NULL;
if (!(__gthrw_(pthread_create) (&new_thread_handle, &_objc_thread_attribs,
(void *) func, arg)))
thread_id = (objc_thread_t) new_thread_handle;
else
thread_id = NULL;
return thread_id;
}
/* Set the current thread's priority. */
static inline int
__gthread_objc_thread_set_priority (int priority)
{
if (!__gthread_active_p ())
return -1;
else
{
#ifdef _POSIX_PRIORITY_SCHEDULING
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
pthread_t thread_id = __gthrw_(pthread_self) ();
int policy;
struct sched_param params;
int priority_min, priority_max;
if (__gthrw_(pthread_getschedparam) (thread_id, &policy, ¶ms) == 0)
{
if ((priority_max = __gthrw_(sched_get_priority_max) (policy)) == -1)
return -1;
if ((priority_min = __gthrw_(sched_get_priority_min) (policy)) == -1)
return -1;
if (priority > priority_max)
priority = priority_max;
else if (priority < priority_min)
priority = priority_min;
params.sched_priority = priority;
/*
* The solaris 7 and several other man pages incorrectly state that
* this should be a pointer to policy but pthread.h is universally
* at odds with this.
*/
if (__gthrw_(pthread_setschedparam) (thread_id, policy, ¶ms) == 0)
return 0;
}
#endif /* _POSIX_THREAD_PRIORITY_SCHEDULING */
#endif /* _POSIX_PRIORITY_SCHEDULING */
return -1;
}
}
/* Return the current thread's priority. */
static inline int
__gthread_objc_thread_get_priority (void)
{
#ifdef _POSIX_PRIORITY_SCHEDULING
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
if (__gthread_active_p ())
{
int policy;
struct sched_param params;
if (__gthrw_(pthread_getschedparam) (__gthrw_(pthread_self) (), &policy, ¶ms) == 0)
return params.sched_priority;
else
return -1;
}
else
#endif /* _POSIX_THREAD_PRIORITY_SCHEDULING */
#endif /* _POSIX_PRIORITY_SCHEDULING */
return OBJC_THREAD_INTERACTIVE_PRIORITY;
}
/* Yield our process time to another thread. */
static inline void
__gthread_objc_thread_yield (void)
{
if (__gthread_active_p ())
__gthrw_(sched_yield) ();
}
/* Terminate the current thread. */
static inline int
__gthread_objc_thread_exit (void)
{
if (__gthread_active_p ())
/* exit the thread */
__gthrw_(pthread_exit) (&__objc_thread_exit_status);
/* Failed if we reached here */
return -1;
}
/* Returns an integer value which uniquely describes a thread. */
static inline objc_thread_t
__gthread_objc_thread_id (void)
{
if (__gthread_active_p ())
return (objc_thread_t) __gthrw_(pthread_self) ();
else
return (objc_thread_t) 1;
}
/* Sets the thread's local storage pointer. */
static inline int
__gthread_objc_thread_set_data (void *value)
{
if (__gthread_active_p ())
return __gthrw_(pthread_setspecific) (_objc_thread_storage, value);
else
{
thread_local_storage = value;
return 0;
}
}
/* Returns the thread's local storage pointer. */
static inline void *
__gthread_objc_thread_get_data (void)
{
if (__gthread_active_p ())
return __gthrw_(pthread_getspecific) (_objc_thread_storage);
else
return thread_local_storage;
}
/* Backend mutex functions */
/* Allocate a mutex. */
static inline int
__gthread_objc_mutex_allocate (objc_mutex_t mutex)
{
if (__gthread_active_p ())
{
mutex->backend = objc_malloc (sizeof (pthread_mutex_t));
if (__gthrw_(pthread_mutex_init) ((pthread_mutex_t *) mutex->backend, NULL))
{
objc_free (mutex->backend);
mutex->backend = NULL;
return -1;
}
}
return 0;
}
/* Deallocate a mutex. */
static inline int
__gthread_objc_mutex_deallocate (objc_mutex_t mutex)
{
if (__gthread_active_p ())
{
int count;
/*
* Posix Threads specifically require that the thread be unlocked
* for __gthrw_(pthread_mutex_destroy) to work.
*/
do
{
count = __gthrw_(pthread_mutex_unlock) ((pthread_mutex_t *) mutex->backend);
if (count < 0)
return -1;
}
while (count);
if (__gthrw_(pthread_mutex_destroy) ((pthread_mutex_t *) mutex->backend))
return -1;
objc_free (mutex->backend);
mutex->backend = NULL;
}
return 0;
}
/* Grab a lock on a mutex. */
static inline int
__gthread_objc_mutex_lock (objc_mutex_t mutex)
{
if (__gthread_active_p ()
&& __gthrw_(pthread_mutex_lock) ((pthread_mutex_t *) mutex->backend) != 0)
{
return -1;
}
return 0;
}
/* Try to grab a lock on a mutex. */
static inline int
__gthread_objc_mutex_trylock (objc_mutex_t mutex)
{
if (__gthread_active_p ()
&& __gthrw_(pthread_mutex_trylock) ((pthread_mutex_t *) mutex->backend) != 0)
{
return -1;
}
return 0;
}
/* Unlock the mutex */
static inline int
__gthread_objc_mutex_unlock (objc_mutex_t mutex)
{
if (__gthread_active_p ()
&& __gthrw_(pthread_mutex_unlock) ((pthread_mutex_t *) mutex->backend) != 0)
{
return -1;
}
return 0;
}
/* Backend condition mutex functions */
/* Allocate a condition. */
static inline int
__gthread_objc_condition_allocate (objc_condition_t condition)
{
if (__gthread_active_p ())
{
condition->backend = objc_malloc (sizeof (pthread_cond_t));
if (__gthrw_(pthread_cond_init) ((pthread_cond_t *) condition->backend, NULL))
{
objc_free (condition->backend);
condition->backend = NULL;
return -1;
}
}
return 0;
}
/* Deallocate a condition. */
static inline int
__gthread_objc_condition_deallocate (objc_condition_t condition)
{
if (__gthread_active_p ())
{
if (__gthrw_(pthread_cond_destroy) ((pthread_cond_t *) condition->backend))
return -1;
objc_free (condition->backend);
condition->backend = NULL;
}
return 0;
}
/* Wait on the condition */
static inline int
__gthread_objc_condition_wait (objc_condition_t condition, objc_mutex_t mutex)
{
if (__gthread_active_p ())
return __gthrw_(pthread_cond_wait) ((pthread_cond_t *) condition->backend,
(pthread_mutex_t *) mutex->backend);
else
return 0;
}
/* Wake up all threads waiting on this condition. */
static inline int
__gthread_objc_condition_broadcast (objc_condition_t condition)
{
if (__gthread_active_p ())
return __gthrw_(pthread_cond_broadcast) ((pthread_cond_t *) condition->backend);
else
return 0;
}
/* Wake up one thread waiting on this condition. */
static inline int
__gthread_objc_condition_signal (objc_condition_t condition)
{
if (__gthread_active_p ())
return __gthrw_(pthread_cond_signal) ((pthread_cond_t *) condition->backend);
else
return 0;
}
#else /* _LIBOBJC */
static inline int
__gthread_create (__gthread_t *__threadid, void *(*__func) (void*),
void *__args)
{
return __gthrw_(pthread_create) (__threadid, NULL, __func, __args);
}
static inline int
__gthread_join (__gthread_t __threadid, void **__value_ptr)
{
return __gthrw_(pthread_join) (__threadid, __value_ptr);
}
static inline int
__gthread_detach (__gthread_t __threadid)
{
return __gthrw_(pthread_detach) (__threadid);
}
static inline int
__gthread_equal (__gthread_t __t1, __gthread_t __t2)
{
return __gthrw_(pthread_equal) (__t1, __t2);
}
static inline __gthread_t
__gthread_self (void)
{
return __gthrw_(pthread_self) ();
}
static inline int
__gthread_yield (void)
{
return __gthrw_(sched_yield) ();
}
static inline int
__gthread_once (__gthread_once_t *__once, void (*__func) (void))
{
if (__gthread_active_p ())
return __gthrw_(pthread_once) (__once, __func);
else
return -1;
}
static inline int
__gthread_key_create (__gthread_key_t *__key, void (*__dtor) (void *))
{
return __gthrw_(pthread_key_create) (__key, __dtor);
}
static inline int
__gthread_key_delete (__gthread_key_t __key)
{
return __gthrw_(pthread_key_delete) (__key);
}
static inline void *
__gthread_getspecific (__gthread_key_t __key)
{
return __gthrw_(pthread_getspecific) (__key);
}
static inline int
__gthread_setspecific (__gthread_key_t __key, const void *__ptr)
{
return __gthrw_(pthread_setspecific) (__key, __ptr);
}
static inline void
__gthread_mutex_init_function (__gthread_mutex_t *__mutex)
{
if (__gthread_active_p ())
__gthrw_(pthread_mutex_init) (__mutex, NULL);
}
static inline int
__gthread_mutex_destroy (__gthread_mutex_t *__mutex)
{
if (__gthread_active_p ())
return __gthrw_(pthread_mutex_destroy) (__mutex);
else
return 0;
}
static inline int
__gthread_mutex_lock (__gthread_mutex_t *__mutex)
{
if (__gthread_active_p ())
return __gthrw_(pthread_mutex_lock) (__mutex);
else
return 0;
}
static inline int
__gthread_mutex_trylock (__gthread_mutex_t *__mutex)
{
if (__gthread_active_p ())
return __gthrw_(pthread_mutex_trylock) (__mutex);
else
return 0;
}
#if _GTHREAD_USE_MUTEX_TIMEDLOCK
static inline int
__gthread_mutex_timedlock (__gthread_mutex_t *__mutex,
const __gthread_time_t *__abs_timeout)
{
if (__gthread_active_p ())
return __gthrw_(pthread_mutex_timedlock) (__mutex, __abs_timeout);
else
return 0;
}
#endif
static inline int
__gthread_mutex_unlock (__gthread_mutex_t *__mutex)
{
if (__gthread_active_p ())
return __gthrw_(pthread_mutex_unlock) (__mutex);
else
return 0;
}
#if !defined( PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP) \
|| defined(_GTHREAD_USE_RECURSIVE_MUTEX_INIT_FUNC)
static inline int
__gthread_recursive_mutex_init_function (__gthread_recursive_mutex_t *__mutex)
{
if (__gthread_active_p ())
{
pthread_mutexattr_t __attr;
int __r;
__r = __gthrw_(pthread_mutexattr_init) (&__attr);
if (!__r)
__r = __gthrw_(pthread_mutexattr_settype) (&__attr,
PTHREAD_MUTEX_RECURSIVE);
if (!__r)
__r = __gthrw_(pthread_mutex_init) (__mutex, &__attr);
if (!__r)
__r = __gthrw_(pthread_mutexattr_destroy) (&__attr);
return __r;
}
return 0;
}
#endif
static inline int
__gthread_recursive_mutex_lock (__gthread_recursive_mutex_t *__mutex)
{
return __gthread_mutex_lock (__mutex);
}
static inline int
__gthread_recursive_mutex_trylock (__gthread_recursive_mutex_t *__mutex)
{
return __gthread_mutex_trylock (__mutex);
}
#if _GTHREAD_USE_MUTEX_TIMEDLOCK
static inline int
__gthread_recursive_mutex_timedlock (__gthread_recursive_mutex_t *__mutex,
const __gthread_time_t *__abs_timeout)
{
return __gthread_mutex_timedlock (__mutex, __abs_timeout);
}
#endif
static inline int
__gthread_recursive_mutex_unlock (__gthread_recursive_mutex_t *__mutex)
{
return __gthread_mutex_unlock (__mutex);
}
static inline int
__gthread_recursive_mutex_destroy (__gthread_recursive_mutex_t *__mutex)
{
return __gthread_mutex_destroy (__mutex);
}
#ifdef _GTHREAD_USE_COND_INIT_FUNC
static inline void
__gthread_cond_init_function (__gthread_cond_t *__cond)
{
if (__gthread_active_p ())
__gthrw_(pthread_cond_init) (__cond, NULL);
}
#endif
static inline int
__gthread_cond_broadcast (__gthread_cond_t *__cond)
{
return __gthrw_(pthread_cond_broadcast) (__cond);
}
static inline int
__gthread_cond_signal (__gthread_cond_t *__cond)
{
return __gthrw_(pthread_cond_signal) (__cond);
}
static inline int
__gthread_cond_wait (__gthread_cond_t *__cond, __gthread_mutex_t *__mutex)
{
return __gthrw_(pthread_cond_wait) (__cond, __mutex);
}
static inline int
__gthread_cond_timedwait (__gthread_cond_t *__cond, __gthread_mutex_t *__mutex,
const __gthread_time_t *__abs_timeout)
{
return __gthrw_(pthread_cond_timedwait) (__cond, __mutex, __abs_timeout);
}
static inline int
__gthread_cond_wait_recursive (__gthread_cond_t *__cond,
__gthread_recursive_mutex_t *__mutex)
{
return __gthread_cond_wait (__cond, __mutex);
}
static inline int
__gthread_cond_destroy (__gthread_cond_t* __cond)
{
return __gthrw_(pthread_cond_destroy) (__cond);
}
#endif /* _LIBOBJC */
#endif /* ! GCC_GTHR_POSIX_H */