// class template array -*- C++ -*-
// Copyright (C) 2004-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/** @file tr1/array
* This is a TR1 C++ Library header.
*/
#ifndef _GLIBCXX_TR1_ARRAY
#define _GLIBCXX_TR1_ARRAY 1
#pragma GCC system_header
#include
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
namespace tr1
{
/**
* @brief A standard container for storing a fixed size sequence of elements.
*
* @ingroup sequences
*
* Meets the requirements of a container, a
* reversible container, and a
* sequence.
*
* Sets support random access iterators.
*
* @param Tp Type of element. Required to be a complete type.
* @param N Number of elements.
*/
template
struct array
{
typedef _Tp value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::reverse_iterator reverse_iterator;
typedef std::reverse_iterator const_reverse_iterator;
// Support for zero-sized arrays mandatory.
value_type _M_instance[_Nm ? _Nm : 1];
// No explicit construct/copy/destroy for aggregate type.
void
assign(const value_type& __u)
{ std::fill_n(begin(), size(), __u); }
void
swap(array& __other)
{ std::swap_ranges(begin(), end(), __other.begin()); }
// Iterators.
iterator
begin()
{ return iterator(std::__addressof(_M_instance[0])); }
const_iterator
begin() const
{ return const_iterator(std::__addressof(_M_instance[0])); }
iterator
end()
{ return iterator(std::__addressof(_M_instance[_Nm])); }
const_iterator
end() const
{ return const_iterator(std::__addressof(_M_instance[_Nm])); }
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
// Capacity.
size_type
size() const { return _Nm; }
size_type
max_size() const { return _Nm; }
_GLIBCXX_NODISCARD bool
empty() const { return size() == 0; }
// Element access.
reference
operator[](size_type __n)
{ return _M_instance[__n]; }
const_reference
operator[](size_type __n) const
{ return _M_instance[__n]; }
reference
at(size_type __n)
{
if (__n >= _Nm)
std::__throw_out_of_range(__N("array::at"));
return _M_instance[__n];
}
const_reference
at(size_type __n) const
{
if (__n >= _Nm)
std::__throw_out_of_range(__N("array::at"));
return _M_instance[__n];
}
reference
front()
{ return *begin(); }
const_reference
front() const
{ return *begin(); }
reference
back()
{ return _Nm ? *(end() - 1) : *end(); }
const_reference
back() const
{ return _Nm ? *(end() - 1) : *end(); }
_Tp*
data()
{ return std::__addressof(_M_instance[0]); }
const _Tp*
data() const
{ return std::__addressof(_M_instance[0]); }
};
// Array comparisons.
template
inline bool
operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return std::equal(__one.begin(), __one.end(), __two.begin()); }
template
inline bool
operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one == __two); }
template
inline bool
operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b)
{
return std::lexicographical_compare(__a.begin(), __a.end(),
__b.begin(), __b.end());
}
template
inline bool
operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return __two < __one; }
template
inline bool
operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one > __two); }
template
inline bool
operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one < __two); }
// Specialized algorithms [6.2.2.2].
template
inline void
swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
{ __one.swap(__two); }
// Tuple interface to class template array [6.2.2.5].
/// tuple_size
template
class tuple_size;
/// tuple_element
template
class tuple_element;
template
struct tuple_size >
{ static const int value = _Nm; };
template
const int
tuple_size >::value;
template
struct tuple_element<_Int, array<_Tp, _Nm> >
{ typedef _Tp type; };
template
inline _Tp&
get(array<_Tp, _Nm>& __arr)
{ return __arr[_Int]; }
template
inline const _Tp&
get(const array<_Tp, _Nm>& __arr)
{ return __arr[_Int]; }
}
_GLIBCXX_END_NAMESPACE_VERSION
}
#endif // _GLIBCXX_TR1_ARRAY