/* The remote-virtual-component simulator framework for GDB, the GNU Debugger. Copyright 2006-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "sim-main.h" #include "hw-main.h" #include "hw-tree.h" #include #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_STRING_H #include #else #ifdef HAVE_STRINGS_H #include #endif #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_SELECT_H #include #endif /* Not guarded in dv-sockser.c, so why here. */ #include #include #include #include /* DEVICE rv - Remote Virtual component DESCRIPTION Socket connection to a remote simulator component, for example one for testing a verilog construction. Protocol defined below. There is a set of 32-bit I/O ports, with a mapping from local to remote addresses. There is a set of interrupts expressed as a bit-mask, with a mapping from remote to local. There is a set of memory ranges (actual memory defined elsewhere), also with a mapping from remote to local addresses, that is expected to be accessible to the remote simulator in 32-byte chunks (simulating DMA). There is a mapping from remote cycles (or an appropriate elsewhere defined time-slice) to local cycles. PROPERTIES reg =
The address (within the parent bus) that this device is to be located. remote-reg = The address of reg on the remote side. Defaults to 0. mem =
Specify an address-range (within the parent bus) that the remote device can access. The memory is assumed to be already defined. If there's no memory defined but the remote side asks for a memory access, the simulation is aborted. remote-mem = The address of mem on the remote side. Defaults to 0. mbox =
Address of the mailbox interface. Writes to this address with the local address of a mailbox command, a complete packet with length and command; (4 or 6)) invokes the mailbox interface. Reads are invalid. Replies are written to the same address. Address space from
up-to-and-including
+3 is allocated. max-poll-ticks = Sets the maximum interval between polling the external component, expressed in internal cycles. Defaults to 10000. watchdog-interval = Sets the wallclock seconds between watchdog packets sent to the remote side (may be larger if there's no rv activity in that time). Defaults to 30. If set to 0, no watchdog packets are sent. intnum = ... Defines a map from remote bit numbers to local values to be emitted on the "int" port, with the external bit number as the ordinal - 1 of the local translation. E.g. 43 121 would mean map external (1<<0) to internal 43 and external (1<<1) to internal 121. The default is unity; no translation. If more than one bit is set in the remote interrupt word, the intmultiple property can be used to control the translation. intmultiple = When more than one bit is set in the remote interrupt word, you may want to map this situation to a separate interrupt value. If this property is non-zero, it is used as that value. If it is zero, the local value for the "int" port is the bitwise-or of the translated local values. host = The hostname or address where the simulator to be used listens. Defaults to "127.0.0.1" port = The hostname or address where the simulator to be used listens. Defaults to 10000. dummy = or dummy = Don't connect to a remote side; use initial dummy contents from (which has to be at least as big as the argument of reg above) or filled with byte-value . Mailboxes are not supported (can be defined but can not be used) and remote-memory accesses don't apply. The main purpose for this property is to simplify use of configuration and simulated hardware that is e.g. only trivially initialized but not actually used. PORTS int (output) Driven as a result of a remote interrupt request. The value is a 32-bit bitset of active interrupts. BUGS All and none. PROTOCOL This is version 1.0 of this protocol, defining packet format and actions in a supposedly upward-compatible manner where client and servers of different versions are expected to interoperate; the format and the definitions below are hopefully generic enough to allow this. Each connection has a server and a client (this code); the roles are known beforehand. The client usually corresponds to a CPU and memory system and the server corresponds to a memory-mapped register hardware interface and/or a DMA controller. They communicate using packets with specific commands, of which some require replies from the other side; most are intiated by the client with one exception. A reply uses the same format as the command. Packets are at least three bytes long, where the first two bytes form a header, a 16-bit little-endian number that is the total length of the packet including the header. There is also a one-byte command. The payload is optional, depending on the command. [[16-bit-low-byte-of-length] [16-bit-high-byte-of-length] [command/reply] [payload byte 0] [payload byte 1] ... [payload byte (length-of-packet - 3)]] Commands: A client or server that reads an undocumented command may exit with a hard error. Payload not defined or disallowed below is ignored. It is expected that future client versions find out the version of the server side by polling with base commands, assuming earlier versions if a certain reply isn't seen, with newly defined payload parts where earlier versions left it undefined. New commands and formats are sent only to the other side after the client and server has found out each others version. Not all servers support all commands; the type of server and supported set of commands is expected to be known beforehand. RV_READ_CMD = 0 Initiated by the client, requires a reply from the server. The payload from the client is at least 4 bytes, forming a 4-byte little-endian address, the rest being undefined. The reply from the server is at least 8 bytes, forming the same address data as in the request and the second 4-byte data being the little-endian contents. RV_WRITE_CMD = 1 Initiated by the client, requires a reply from the server. Payload from the client is at least 8 bytes, forming a 4-byte little-endian word being the address, the rest being the little-endian contents to write. The reply from the server is 8 bytes unless elsewhere agreed otherwise, forming the same address and data as in the request. The data sent back may have been altered to correspond to defined parts but can safely be discarded. RV_IRQ_CMD = 2 Initiated by the server, no reply. The payload is 4 bytes, forming a little-endian word with bits numbers corresponding to currently active interrupt sources; value (1<fd == -1) hw_abort (me, "couldn't open a connection to %s:%d because: %s", rv->host, rv->port, strerror (rv->saved_errno)); while (len > 0) { ssize_t ret = write (rv->fd, bufp, len); if (ret < 0) /* FIXME: More graceful exit. */ hw_abort (me, "write to %s:%d failed: %s\n", rv->host, rv->port, strerror (errno)); len -= ret; bufp += ret; } } /* Read LEN bytes of data into BUF from the socket. Set the file descriptor to -1 if there's an error. */ static void hw_rv_read (struct hw *me, void *buf, unsigned int len) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned8 *bufp = buf; while (len > 0) { ssize_t ret = read (rv->fd, bufp, len); /* We get all zero if the remote end quits, but no error indication; even select says there's data active. */ if (ret <= 0) { if (close (rv->fd) != 0) /* FIXME: More graceful exit. */ hw_abort (me, "read from %s:%d failed: %d\n", rv->host, rv->port, errno); rv->fd = -1; return; } len -= ret; bufp += ret; } } /* Construct and send a packet of data of type CMD and len LEN_NOHEADER (not counting the header...). */ static void hw_rv_send (struct hw *me, unsigned int cmd, void *msg, unsigned int len_noheader) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned8 buf[32+3]; unsigned8 *bufp; unsigned int len = len_noheader + 3; int ret; buf[0] = len & 255; buf[1] = (len >> 8) & 255; buf[2] = cmd; if (len > sizeof (buf)) { hw_rv_write (me, buf, 3); len = len_noheader; bufp = msg; } else { memcpy (buf + 3, msg, len_noheader); bufp = buf; } hw_rv_write (me, bufp, len); } /* Handle incoming DMA requests as per the RV_MEM_RD_CMD packet. Abort on errors. */ static void hw_rv_read_mem (struct hw *me, unsigned int len) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); /* If you change this size, please adjust the mem2 testcase. */ unsigned8 buf[32+8]; unsigned8 *bufp = buf; unsigned32 leaddr; unsigned32 addr; unsigned32 lelen; unsigned32 i; if (len != 8) hw_abort (me, "expected DMA read request len 8+3, got %d+3", len); hw_rv_read (me, &leaddr, 4); hw_rv_read (me, &lelen, 4); len = LE2H_4 (lelen); addr = LE2H_4 (leaddr); if (addr < rv->remote_mem_address || addr >= rv->remote_mem_address + rv->mem_size) hw_abort (me, "DMA read at remote 0x%x; outside [0x%x..0x%x-1]", (unsigned) addr, (unsigned) rv->remote_mem_address, (unsigned) (rv->remote_mem_address + rv->mem_size)); addr = addr - rv->remote_mem_address + rv->mem_address; if (len == 0) hw_abort (me, "DMA read request for 0 bytes isn't supported"); if (len & ~rv->mem_burst_mask) hw_abort (me, "DMA trying to read %d bytes; not matching mask of 0x%x", len, rv->mem_burst_mask); if (len + 8 > sizeof (buf)) bufp = hw_malloc (me, len + 8); HW_TRACE ((me, "DMA R 0x%x..0x%x", addr, addr + len -1)); hw_dma_read_buffer (me, bufp + 8, 0, addr, len); if (hw_trace_p (me)) for (i = 0; i < len; i += 4) HW_TRACE ((me, "0x%x: %02x %02x %02x %02x", addr + i, bufp[i+8], bufp[i+9], bufp[i+10], bufp[i+11])); memcpy (bufp, &leaddr, 4); memcpy (bufp + 4, &lelen, 4); hw_rv_send (me, RV_MEM_RD_CMD, bufp, len + 8); if (bufp != buf) hw_free (me, bufp); } /* Handle incoming DMA requests as per the RV_MEM_WR_CMD packet. Abort on errors. */ static void hw_rv_write_mem (struct hw *me, unsigned int plen) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); /* If you change this size, please adjust the mem2 testcase. */ unsigned8 buf[32+8]; unsigned8 *bufp = buf; unsigned32 leaddr; unsigned32 addr; unsigned32 lelen; unsigned32 len; unsigned32 i; hw_rv_read (me, &leaddr, 4); hw_rv_read (me, &lelen, 4); len = LE2H_4 (lelen); addr = LE2H_4 (leaddr); if (len != plen - 8) hw_abort (me, "inconsistency in DMA write request packet: " "envelope %d+3, inner %d bytes", plen, len); if (addr < rv->remote_mem_address || addr >= rv->remote_mem_address + rv->mem_size) hw_abort (me, "DMA write at remote 0x%x; outside [0x%x..0x%x-1]", (unsigned) addr, (unsigned) rv->remote_mem_address, (unsigned) (rv->remote_mem_address + rv->mem_size)); addr = addr - rv->remote_mem_address + rv->mem_address; if (len == 0) hw_abort (me, "DMA write request for 0 bytes isn't supported"); if (len & ~rv->mem_burst_mask) hw_abort (me, "DMA trying to write %d bytes; not matching mask of 0x%x", len, rv->mem_burst_mask); if (len + 8 > sizeof (buf)) bufp = hw_malloc (me, len + 8); hw_rv_read (me, bufp + 8, len); HW_TRACE ((me, "DMA W 0x%x..0x%x", addr, addr + len - 1)); hw_dma_write_buffer (me, bufp + 8, 0, addr, len, 0); if (hw_trace_p (me)) for (i = 0; i < len; i += 4) HW_TRACE ((me, "0x%x: %02x %02x %02x %02x", addr + i, bufp[i+8], bufp[i+9], bufp[i+10], bufp[i+11])); if (bufp != buf) hw_free (me, bufp); } static void hw_rv_irq (struct hw *me, unsigned int len) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned32 intbitsle; unsigned32 intbits_ext; unsigned32 intval = 0; int i; if (len != 4) hw_abort (me, "IRQ with %d data not supported", len); hw_rv_read (me, &intbitsle, 4); intbits_ext = LE2H_4 (intbitsle); for (i = 0; i < 32; i++) if ((intbits_ext & (1 << i)) != 0) intval |= rv->remote_to_local_int[i]; if ((intbits_ext & ~(intbits_ext - 1)) != intbits_ext && rv->intmultiple != 0) intval = rv->intmultiple; HW_TRACE ((me, "IRQ 0x%x", intval)); hw_port_event (me, INT_PORT, intval); } /* Handle incoming interrupt notifications as per the RV_IRQ_CMD packet. Abort on errors. */ static void hw_rv_handle_incoming (struct hw *me, int expected_type, unsigned8 *buf, unsigned int *return_len) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned8 cbuf[32]; unsigned int len; unsigned int cmd; while (1) { hw_rv_read (me, cbuf, 3); if (rv->fd == -1) return; len = cbuf[0] + cbuf[1] * 256 - 3; cmd = cbuf[2]; /* These come in "asynchronously"; not as a reply. */ switch (cmd) { case RV_IRQ_CMD: hw_rv_irq (me, len); break; case RV_MEM_RD_CMD: hw_rv_read_mem (me, len); break; case RV_MEM_WR_CMD: hw_rv_write_mem (me, len); break; } /* Something is incoming from the other side, so tighten up all slack at the next wait. */ rv->next_period = 1; switch (cmd) { case RV_MEM_RD_CMD: case RV_MEM_WR_CMD: case RV_IRQ_CMD: /* Don't try to handle more than one of these if we were'nt expecting a reply. */ if (expected_type == -1) return; continue; } /* Require a match between this supposed-reply and the command for the rest. */ if (cmd != expected_type) hw_abort (me, "unexpected reply, expected command %d, got %d", expected_type, cmd); switch (cmd) { case RV_MBOX_PUT_CMD: case RV_MBOX_HANDLE_CMD: case RV_WRITE_CMD: case RV_READ_CMD: hw_rv_read (me, buf, len <= *return_len ? len : *return_len); *return_len = len; break; } break; } } /* Send a watchdog packet. Make a note of wallclock time. */ static void hw_rv_send_wdog (struct hw *me) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); HW_TRACE ((me, "WD")); gettimeofday (&rv->last_wdog_time, NULL); hw_rv_send (me, RV_WATCHDOG_CMD, "", 0); } /* Poll the remote side: see if there's any incoming traffic; handle a packet if so. Send a watchdog packet if it's time to do so. Beware that the Linux select call indicates traffic for a socket that the remote side has closed (which may be because it was finished; don't hork until we need to write something just because we're polling). */ static void hw_rv_poll_once (struct hw *me) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); fd_set rfds; fd_set efds; struct timeval now; int ret; struct timeval tv; if (rv->fd == -1) /* Connection has died or was never initiated. */ return; FD_ZERO (&rfds); FD_SET (rv->fd, &rfds); FD_ZERO (&efds); FD_SET (rv->fd, &efds); tv.tv_sec = 0; tv.tv_usec = 0; ret = select (rv->fd + 1, &rfds, NULL, &efds, &tv); gettimeofday (&now, NULL); if (ret < 0) hw_abort (me, "select failed: %d\n", errno); if (rv->watchdog_interval != 0 && now.tv_sec - rv->last_wdog_time.tv_sec >= rv->watchdog_interval) hw_rv_send_wdog (me); if (FD_ISSET (rv->fd, &rfds)) hw_rv_handle_incoming (me, -1, NULL, NULL); } /* Initialize mapping of remote-to-local interrupt data. */ static void hw_rv_map_ints (struct hw *me) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); int i; for (i = 0; i < 32; i++) rv->remote_to_local_int[i] = 1 << i; if (hw_find_property (me, "intnum") != NULL) for (i = 0; i < 32; i++) { signed_cell val = -1; if (hw_find_integer_array_property (me, "intnum", i, &val) > 0) { if (val > 0) rv->remote_to_local_int[i] = val; else hw_abort (me, "property \"intnum@%d\" must be > 0; is %d", i, (int) val); } } } /* Handle the after-N-ticks "poll event", calling the poll-the-fd method. Update the period. */ static void do_poll_event (struct hw *me, void *data) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned32 new_period; if (rv->dummy != NULL) return; hw_rv_poll_once (me); if (rv->fd >= 0) rv->poll_callback = hw_event_queue_schedule (me, rv->next_period, do_poll_event, NULL); new_period = rv->next_period * 2; if (new_period <= rv->max_tick_poll_interval) rv->next_period = new_period; } /* HW tree traverse function for hw_rv_add_init. */ static void hw_rv_add_poller (struct hw *me, void *data) { hw_rv_device *rv; if (hw_family (me) == NULL || strcmp (hw_family (me), RV_FAMILY_NAME) != 0) return; rv = (hw_rv_device *) hw_data (me); if (rv->poll_callback != NULL) return; rv->poll_callback = hw_event_queue_schedule (me, 1, do_poll_event, NULL); } /* Simulator module init function for hw_rv_add_init. */ /* FIXME: For the call so hw_tree_traverse, we need to know that the first member of struct sim_hw is the struct hw *root, but there's no accessor method and struct sim_hw is defined in sim-hw.c only. Hence this hack, until an accessor is added, or there's a traverse function that takes a SIM_DESC argument. */ struct sim_hw { struct hw *tree; }; static SIM_RC hw_rv_add_rv_pollers (SIM_DESC sd) { hw_tree_traverse (STATE_HW (sd)->tree, hw_rv_add_poller, NULL, NULL); return SIM_RC_OK; } /* We need to add events for polling, but we can't add one from the finish-function, and there are no other call points, at least for instances without "reg" (when there are just DMA requests from the remote end; no locally initiated activity). Therefore we add a simulator module init function, but those don't have private payload arguments; just a SD argument. We cope by parsing the HW root and making sure *all* "rv":s have poll callbacks installed. Luckily, this is just an initialization step, and not many simultaneous instances of rv are expected: we get a N**2 complexity for visits to each rv node by this method. */ static void hw_rv_add_init (struct hw *me) { sim_module_add_init_fn (hw_system (me), hw_rv_add_rv_pollers); } /* Open up a connection to the other side. Abort on errors. */ static void hw_rv_init_socket (struct hw *me) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); int sock; struct sockaddr_in server; rv->fd = -1; if (rv->dummy != NULL) return; memset (&server, 0, sizeof (server)); server.sin_family = AF_INET; server.sin_addr.s_addr = inet_addr (rv->host); /* Solaris 2.7 lacks this macro. */ #ifndef INADDR_NONE #define INADDR_NONE -1 #endif if (server.sin_addr.s_addr == INADDR_NONE) { struct hostent *h; h = gethostbyname (rv->host); if (h != NULL) { memcpy (&server.sin_addr, h->h_addr, h->h_length); server.sin_family = h->h_addrtype; } else hw_abort (me, "can't resolve host %s", rv->host); } server.sin_port = htons (rv->port); sock = socket (AF_INET, SOCK_STREAM, 0); if (sock == -1) hw_abort (me, "can't get a socket for %s:%d connection", rv->host, rv->port); if (connect (sock, (struct sockaddr *) &server, sizeof server) >= 0) { rv->fd = sock; /* FIXME: init packet here. Maybe start packet too. */ if (rv->watchdog_interval != 0) hw_rv_send_wdog (me); } else /* Stash the errno for later display, if some connection activity is requested. Don't emit an error here; we might have been called just for test purposes. */ rv->saved_errno = errno; } /* Local rv register reads end up here. */ static unsigned int hw_rv_reg_read (struct hw *me, void *dest, int space, unsigned_word addr, unsigned int nr_bytes) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned8 addr_data[8] = ""; unsigned32 a_l = H2LE_4 (addr - rv->reg_address + rv->remote_reg_address); unsigned int len = 8; if (nr_bytes != 4) hw_abort (me, "must be four byte read"); if (addr == rv->mbox_address) hw_abort (me, "invalid read of mbox address 0x%x", (unsigned) rv->mbox_address); memcpy (addr_data, &a_l, 4); HW_TRACE ((me, "REG R 0x%x", addr)); if (rv->dummy != NULL) { len = 8; memcpy (addr_data + 4, rv->dummy + addr - rv->reg_address, 4); } else { hw_rv_send (me, RV_READ_CMD, addr_data, len); hw_rv_handle_incoming (me, RV_READ_CMD, addr_data, &len); } if (len != 8) hw_abort (me, "read %d != 8 bytes returned", len); HW_TRACE ((me, ":= 0x%02x%02x%02x%02x", addr_data[7], addr_data[6], addr_data[5], addr_data[4])); memcpy (dest, addr_data + 4, 4); return nr_bytes; } /* Local rv mbox requests (handle or put) end up here. */ static void hw_rv_mbox (struct hw *me, unsigned_word address) { unsigned8 buf[256+3]; unsigned int cmd; unsigned int rlen; unsigned32 i; unsigned int len = hw_dma_read_buffer (me, buf, 0, address, 3); if (len != 3) hw_abort (me, "mbox read %d != 3 bytes returned", len); cmd = buf[2]; if (cmd != RV_MBOX_HANDLE_CMD && cmd != RV_MBOX_PUT_CMD) hw_abort (me, "unsupported mbox command %d", cmd); len = buf[0] + buf[1]*256; if (len > sizeof (buf)) hw_abort (me, "mbox cmd %d send size %d unsupported", cmd, len); rlen = hw_dma_read_buffer (me, buf + 3, 0, address + 3, len - 3); if (rlen != len - 3) hw_abort (me, "mbox read %d != %d bytes returned", rlen, len - 3); HW_TRACE ((me, "MBOX %s 0x%x..0x%x", cmd == RV_MBOX_HANDLE_CMD ? "H" : "P", address, address + len - 1)); for (i = 0; i < rlen; i += 8) HW_TRACE ((me, "0x%x: %02x %02x %02x %02x %02x %02x %02x %02x", address + 3 + i, buf[3+i], buf[4+i], buf[5+i], buf[6+i], buf[7+i], buf[8+i], buf[9+i], buf[10+i])); len -= 3; hw_rv_send (me, cmd, buf + 3, len); /* Note: both ..._PUT and ..._HANDLE get the ..._HANDLE reply. */ hw_rv_handle_incoming (me, RV_MBOX_HANDLE_CMD, buf + 3, &len); if (len > sizeof (buf)) hw_abort (me, "mbox cmd %d receive size %d unsupported", cmd, len); HW_TRACE ((me, "-> 0x%x..0x%x", address, address + len + 3 - 1)); for (i = 0; i < len; i += 8) HW_TRACE ((me, "0x%x: %02x %02x %02x %02x %02x %02x %02x %02x", address + 3 + i, buf[3+i], buf[4+i], buf[5+i], buf[6+i], buf[7+i], buf[8+i], buf[9+i], buf[10+i])); len += 3; buf[0] = len & 255; buf[1] = len / 256; rlen = hw_dma_write_buffer (me, buf, 0, address, len, 0); if (rlen != len) hw_abort (me, "mbox write %d != %d bytes", rlen, len); } /* Local rv register writes end up here. */ static unsigned int hw_rv_reg_write (struct hw *me, const void *source, int space, unsigned_word addr, unsigned int nr_bytes) { hw_rv_device *rv = (hw_rv_device *) hw_data (me); unsigned8 addr_data[8] = ""; unsigned32 a_l = H2LE_4 (addr - rv->reg_address + rv->remote_reg_address); unsigned int len = 8; if (nr_bytes != 4) hw_abort (me, "must be four byte write"); memcpy (addr_data, &a_l, 4); memcpy (addr_data + 4, source, 4); if (addr == rv->mbox_address) { unsigned32 mbox_addr_le; if (rv->dummy != NULL) hw_abort (me, "mbox not supported for a dummy instance"); memcpy (&mbox_addr_le, source, 4); hw_rv_mbox (me, LE2H_4 (mbox_addr_le)); return nr_bytes; } HW_TRACE ((me, "REG W 0x%x := 0x%02x%02x%02x%02x", addr, addr_data[7], addr_data[6], addr_data[5], addr_data[4])); if (rv->dummy != NULL) { len = 8; memcpy (rv->dummy + addr - rv->reg_address, addr_data + 4, 4); } else { hw_rv_send (me, RV_WRITE_CMD, addr_data, len); hw_rv_handle_incoming (me, RV_WRITE_CMD, addr_data, &len); } if (len != 8) hw_abort (me, "read %d != 8 bytes returned", len); /* We had an access: tighten up all slack. */ rv->next_period = 1; return nr_bytes; } /* Instance initializer function. */ static void hw_rv_finish (struct hw *me) { hw_rv_device *rv = HW_ZALLOC (me, hw_rv_device); int i; const struct hw_property *mem_prop; const struct hw_property *dummy_prop; const struct hw_property *mbox_prop; set_hw_data (me, rv); #undef RV_GET_IPROP #undef RV_GET_PROP #define RV_GET_PROP(T, N, M, D) \ do \ { \ if (hw_find_property (me, N) != NULL) \ rv->M = hw_find_ ## T ## _property (me, N); \ else \ rv->M = (D); \ } \ while (0) #define RV_GET_IPROP(N, M, D) RV_GET_PROP (integer, N, M, D) RV_GET_PROP (string, "host", host, "127.0.0.1"); RV_GET_IPROP ("port", port, 10000); RV_GET_IPROP ("remote-reg", remote_reg_address, 0); RV_GET_IPROP ("max-poll-ticks", max_tick_poll_interval, 10000); RV_GET_IPROP ("watchdog-interval", watchdog_interval, 30); RV_GET_IPROP ("remote-mem", remote_mem_address, 0); RV_GET_IPROP ("mem-burst-mask", mem_burst_mask, 0xffff); RV_GET_IPROP ("intmultiple", intmultiple, 0); set_hw_io_read_buffer (me, hw_rv_reg_read); set_hw_io_write_buffer (me, hw_rv_reg_write); set_hw_ports (me, hw_rv_ports); rv->next_period = 1; /* FIXME: We only support zero or one reg and zero or one mem area. */ if (hw_find_property (me, "reg") != NULL) { reg_property_spec reg; if (hw_find_reg_array_property (me, "reg", 0, ®)) { unsigned_word attach_address; int attach_space; unsigned int attach_size; hw_unit_address_to_attach_address (hw_parent (me), ®.address, &attach_space, &attach_address, me); rv->reg_address = attach_address; hw_unit_size_to_attach_size (hw_parent (me), ®.size, &attach_size, me); rv->reg_size = attach_size; if ((attach_address & 3) != 0) hw_abort (me, "register block must be 4 byte aligned"); hw_attach_address (hw_parent (me), 0, attach_space, attach_address, attach_size, me); } else hw_abort (me, "property \"reg\" has the wrong type"); } dummy_prop = hw_find_property (me, "dummy"); if (dummy_prop != NULL) { if (rv->reg_size == 0) hw_abort (me, "dummy argument requires a \"reg\" property"); if (hw_property_type (dummy_prop) == integer_property) { unsigned32 dummyfill = hw_find_integer_property (me, "dummy"); unsigned8 *dummymem = hw_malloc (me, rv->reg_size); memset (dummymem, dummyfill, rv->reg_size); rv->dummy = dummymem; } else { const char *dummyarg = hw_find_string_property (me, "dummy"); unsigned8 *dummymem = hw_malloc (me, rv->reg_size); FILE *f = fopen (dummyarg, "rb"); if (f == NULL) hw_abort (me, "opening dummy-file \"%s\": %s", dummyarg, strerror (errno)); if (fread (dummymem, 1, rv->reg_size, f) != rv->reg_size) hw_abort (me, "reading dummy-file \"%s\": %s", dummyarg, strerror (errno)); fclose (f); rv->dummy = dummymem; } } mbox_prop = hw_find_property (me, "mbox"); if (mbox_prop != NULL) { if (hw_property_type (mbox_prop) == integer_property) { signed_cell attach_address_sc = hw_find_integer_property (me, "mbox"); rv->mbox_address = (unsigned32) attach_address_sc; hw_attach_address (hw_parent (me), 0, 0, (unsigned32) attach_address_sc, 4, me); } else hw_abort (me, "property \"mbox\" has the wrong type"); } mem_prop = hw_find_property (me, "mem"); if (mem_prop != NULL) { signed_cell attach_address_sc; signed_cell attach_size_sc; /* Only specific names are reg_array_properties, the rest are array_properties. */ if (hw_property_type (mem_prop) == array_property && hw_property_sizeof_array (mem_prop) == 2 * sizeof (attach_address_sc) && hw_find_integer_array_property (me, "mem", 0, &attach_address_sc) && hw_find_integer_array_property (me, "mem", 1, &attach_size_sc)) { /* Unfortunate choice of types forces us to dance around a bit. */ rv->mem_address = (unsigned32) attach_address_sc; rv->mem_size = (unsigned32) attach_size_sc; if ((attach_address_sc & 3) != 0) hw_abort (me, "memory block must be 4 byte aligned"); } else hw_abort (me, "property \"mem\" has the wrong type"); } hw_rv_map_ints (me); hw_rv_init_socket (me); /* We need an extra initialization pass, after all others currently scheduled (mostly, after the simulation events machinery has been initialized so the events we want don't get thrown out). */ hw_rv_add_init (me); } /* Our root structure; see dv-* build machinery for usage. */ const struct hw_descriptor dv_rv_descriptor[] = { { RV_FAMILY_NAME, hw_rv_finish }, { NULL } };