/* mpfr_exp_2 -- exponential of a floating-point number using algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n)) Copyright 1999-2020 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H /* MPFR_INT_CEIL_LOG2 */ #include "mpfr-impl.h" static unsigned long mpfr_exp2_aux (mpz_t, mpfr_srcptr, mpfr_prec_t, mpfr_exp_t *); static unsigned long mpfr_exp2_aux2 (mpz_t, mpfr_srcptr, mpfr_prec_t, mpfr_exp_t *); static mpfr_exp_t mpz_normalize (mpz_t, mpz_t, mpfr_exp_t); static mpfr_exp_t mpz_normalize2 (mpz_t, mpz_t, mpfr_exp_t, mpfr_exp_t); /* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q. Otherwise do nothing and return 0. */ static mpfr_exp_t mpz_normalize (mpz_t rop, mpz_t z, mpfr_exp_t q) { size_t k; MPFR_MPZ_SIZEINBASE2 (k, z); MPFR_ASSERTD (k == (mpfr_uexp_t) k); if (MPFR_LIKELY(q < 0 || (mpfr_uexp_t) k > (mpfr_uexp_t) q)) { mpz_fdiv_q_2exp (rop, z, (unsigned long) ((mpfr_uexp_t) k - q)); return (mpfr_exp_t) k - q; } mpz_set (rop, z); return 0; } /* if expz > target, shift z by (expz-target) bits to the left. if expz < target, shift z by (target-expz) bits to the right. Returns target. */ static mpfr_exp_t mpz_normalize2 (mpz_t rop, mpz_t z, mpfr_exp_t expz, mpfr_exp_t target) { if (MPFR_LIKELY(target > expz)) mpz_fdiv_q_2exp (rop, z, target - expz); else mpz_mul_2exp (rop, z, expz - target); return target; } /* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n where x = n*log(2)+(2^K)*r together with the Paterson-Stockmeyer O(t^(1/2)) algorithm for the evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)). This function returns with the exact flags due to exp. */ int mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { long n; unsigned long K, k, l, err; /* FIXME: Which type ? */ int error_r; mpfr_exp_t exps, expx; mpfr_prec_t q, precy; int inexact; mpfr_t s, r; mpz_t ss; MPFR_GROUP_DECL(group); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, inexact)); expx = MPFR_GET_EXP (x); precy = MPFR_PREC(y); /* First perform argument reduction: if x' = x - n*log(2) we have exp(x) = exp(x)*2^n. We should take n near from x/log(2) but it does not need to be exact. Warning: we cannot use the 'double' type here, since on 64-bit machines x may be as large as 2^62*log(2) without overflow, and then x/log(2) is about 2^62: not every integer of that size can be represented as a 'double', thus the argument reduction would fail. */ if (MPFR_UNLIKELY(expx <= -2)) /* |x| <= 0.25, thus n = round(x/log(2)) = 0 */ n = 0; else { mp_limb_t r_limb[(sizeof (long) -1) / sizeof(mp_limb_t) + 1]; /* Note: we use precision sizeof (long) * CHAR_BIT - 1 here since it is more efficient that full limb precision. The value of n will depend on whether MPFR_LONG_WITHIN_LIMB is defined or not. For instance, for r = 0.111E0, one gets n = 0 in the former case and n = 1 in the latter case. */ MPFR_TMP_INIT1(r_limb, r, sizeof (long) * CHAR_BIT - 1); mpfr_div (r, x, __gmpfr_const_log2_RNDD, MPFR_RNDN); #ifdef MPFR_LONG_WITHIN_LIMB /* The following code assume an unsigned long can fit in a mp_limb_t */ { mp_limb_t a; mpfr_exp_t exp; /* Read the long directly (faster than using mpfr_get_si since it fits, it is not singular, it can't be zero and there is no conversion to do) */ MPFR_ASSERTD (MPFR_NOTZERO (r)); exp = MPFR_GET_EXP (r); MPFR_ASSERTD (exp <= GMP_NUMB_BITS); if (exp >= 1) { a = MPFR_MANT(r)[0] >> (GMP_NUMB_BITS - exp); n = MPFR_IS_POS (r) ? a : a <= LONG_MAX ? - (long) a : LONG_MIN; } else n = 0; } #else /* Use generic way to get the long */ n = mpfr_get_si (r, MPFR_RNDN); #endif } /* we have |x| <= (|n|+1)*log(2) */ MPFR_LOG_MSG (("d(x)=%1.30e n=%ld\n", mpfr_get_d1(x), n)); /* error_r bounds the cancelled bits in x - n*log(2) */ if (MPFR_UNLIKELY (n == 0)) error_r = 0; else { error_r = mpfr_nbits_ulong (SAFE_ABS (unsigned long, n) + 1); /* we have |x| <= 2^error_r * log(2) */ } /* for the O(n^(1/2)*M(n)) method, the Taylor series computation of n/K terms costs about n/(2K) multiplications when computed in fixed point */ K = (precy < MPFR_EXP_2_THRESHOLD) ? __gmpfr_isqrt ((precy + 1) / 2) + 3 : __gmpfr_cuberoot (4*precy); l = (precy - 1) / K + 1; err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18); /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */ q = precy + err + K + 10; /* if |x| >> 1, take into account the cancelled bits */ if (expx > 0) q += expx; /* Even with to the mpfr_prec_round below, it is possible to use the MPFR_GROUP_* macros here because mpfr_prec_round is only called in a special case. */ MPFR_GROUP_INIT_2(group, q + error_r, r, s); mpz_init (ss); /* the algorithm consists in computing an upper bound of exp(x) using a precision of q bits, and see if we can round to MPFR_PREC(y) taking into account the maximal error. Otherwise we increase q. */ MPFR_ZIV_INIT (loop, q); for (;;) { MPFR_LOG_MSG (("n=%ld K=%lu l=%lu q=%lu error_r=%d\n", n, K, l, (unsigned long) q, error_r)); /* First reduce the argument to r = x - n * log(2), so that r is small in absolute value. We want an upper bound on r to get an upper bound on exp(x). */ /* if n<0, we have to get an upper bound of log(2) in order to get an upper bound of r = x-n*log(2) */ mpfr_const_log2 (s, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU); /* s is within 1 ulp(s) of log(2) */ mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU); /* r is within 3 ulps of |n|*log(2) */ if (n < 0) MPFR_CHANGE_SIGN (r); /* r <= n*log(2), within 3 ulps */ MPFR_LOG_VAR (x); MPFR_LOG_VAR (r); mpfr_sub (r, x, r, MPFR_RNDU); while (MPFR_IS_PURE_FP(r) && MPFR_IS_NEG (r)) { /* initial approximation n was too large */ n--; mpfr_add (r, r, s, MPFR_RNDU); } /* if r is 0, we cannot round correctly */ if (MPFR_LIKELY(MPFR_IS_PURE_FP (r))) { /* since there was a cancellation in x - n*log(2), the low error_r bits from r are zero and thus non significant, thus we can reduce the working precision */ if (MPFR_LIKELY(error_r > 0)) { MPFR_ASSERTD( MPFR_PREC(r) > q); /* since MPFR_PREC(r) > q, there is no reallocation to do, and it is safe to use it with MPFR_GROUP functions */ mpfr_prec_round (r, q, MPFR_RNDU); } /* the error on r is at most 3 ulps (3 ulps if error_r = 0, and 1 + 3/2 if error_r > 0) */ MPFR_LOG_VAR (r); MPFR_ASSERTD (MPFR_IS_POS (r)); mpfr_div_2ui (r, r, K, MPFR_RNDU); /* r = (x-n*log(2))/2^K, exact */ /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */ MPFR_ASSERTD (MPFR_IS_PURE_FP (r) && MPFR_EXP (r) < 0); l = (precy < MPFR_EXP_2_THRESHOLD) ? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */ : mpfr_exp2_aux2 (ss, r, q, &exps); /* Paterson/Stockmeyer meth */ MPFR_LOG_MSG (("l=%lu q=%lu (K+l)*q^2=%1.3e\n", l, (unsigned long) q, (K + l) * (double) q * q)); for (k = 0; k < K; k++) { mpz_mul (ss, ss, ss); exps *= 2; exps += mpz_normalize (ss, ss, q); } mpfr_set_z_2exp (s, ss, exps, MPFR_RNDN); /* error is at most 2^K*l, plus 2 to take into account of the error of 3 ulps on r */ err = K + MPFR_INT_CEIL_LOG2 (l) + 2; MPFR_LOG_MSG (("before mult. by 2^n:\n", 0)); MPFR_LOG_VAR (s); MPFR_LOG_MSG (("err=%lu bits\n", K)); if (MPFR_LIKELY (MPFR_CAN_ROUND (s, q - err, precy, rnd_mode))) { MPFR_CLEAR_FLAGS (); inexact = mpfr_mul_2si (y, s, n, rnd_mode); break; } } MPFR_ZIV_NEXT (loop, q); MPFR_GROUP_REPREC_2(group, q+error_r, r, s); } MPFR_ZIV_FREE (loop); mpz_clear (ss); MPFR_GROUP_CLEAR (group); return inexact; } /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q using naive method with O(l) multiplications. Return the number of iterations l. The absolute error on s is less than 3*l*(l+1)*2^(-q). Version using fixed-point arithmetic with mpz instead of mpfr for internal computations. */ static unsigned long mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, mpfr_prec_t q, mpfr_exp_t *exps) { unsigned long l; mpfr_exp_t dif, expt, expr; mpz_t t, rr; mp_size_t sbit, tbit; MPFR_ASSERTD (MPFR_IS_PURE_FP (r)); expt = 0; *exps = 1 - (mpfr_exp_t) q; /* s = 2^(q-1) */ mpz_init (t); mpz_init (rr); mpz_set_ui (t, 1); mpz_set_ui (s, 1); mpz_mul_2exp (s, s, q-1); expr = mpfr_get_z_2exp (rr, r); /* no error here */ l = 0; for (;;) { l++; mpz_mul(t, t, rr); expt += expr; MPFR_MPZ_SIZEINBASE2 (sbit, s); MPFR_MPZ_SIZEINBASE2 (tbit, t); dif = *exps + sbit - expt - tbit; /* truncates the bits of t which are < ulp(s) = 2^(1-q) */ expt += mpz_normalize (t, t, (mpfr_exp_t) q - dif); /* error at most 2^(1-q) */ if (l > 1) { /* GMP doesn't optimize the case of power of 2 */ if (IS_POW2(l)) { int bits = MPFR_INT_CEIL_LOG2(l); mpz_fdiv_q_2exp (t, t, bits); /* error at most 2^(1-q) */ } else { mpz_fdiv_q_ui (t, t, l); /* error at most 2^(1-q) */ } /* the error wrt t^l/l! is here at most 3*l*ulp(s) */ MPFR_ASSERTD (expt == *exps); } if (mpz_sgn (t) == 0) break; mpz_add (s, s, t); /* no error here: exact */ /* ensures rr has the same size as t: after several shifts, the error on rr is still at most ulp(t)=ulp(s) */ MPFR_MPZ_SIZEINBASE2 (tbit, t); expr += mpz_normalize (rr, rr, tbit); } mpz_clear (t); mpz_clear (rr); return 3 * l * (l + 1); } /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q using Paterson-Stockmeyer algorithm with O(sqrt(l)) multiplications. Return l. Uses m multiplications of full size and 2l/m of decreasing size, i.e. a total equivalent to about m+l/m full multiplications, i.e. 2*sqrt(l) for m=sqrt(l). NOTE[VL]: The following sentence seems to be obsolete since MY_INIT_MPZ is no longer used (r6919); sizer was the number of limbs of r. Version using mpz. ss must have at least (sizer+1) limbs. The error is bounded by (l^2+4*l) ulps where l is the return value. */ static unsigned long mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mpfr_prec_t q, mpfr_exp_t *exps) { mpfr_exp_t expr, *expR, expt; mpfr_prec_t ql; unsigned long l, m, i; mpz_t t, *R, rr, tmp; mp_size_t sbit, rrbit; MPFR_TMP_DECL(marker); /* estimate value of l */ MPFR_ASSERTD (MPFR_GET_EXP (r) < 0); l = q / (- MPFR_GET_EXP (r)); m = __gmpfr_isqrt (l); /* we access R[2], thus we need m >= 2 */ if (m < 2) m = 2; MPFR_TMP_MARK(marker); R = (mpz_t*) MPFR_TMP_ALLOC ((m + 1) * sizeof (mpz_t)); /* R[i] is r^i */ expR = (mpfr_exp_t*) MPFR_TMP_ALLOC((m + 1) * sizeof (mpfr_exp_t)); /* expR[i] is the exponent for R[i] */ mpz_init (tmp); mpz_init (rr); mpz_init (t); mpz_set_ui (s, 0); *exps = 1 - q; /* 1 ulp = 2^(1-q) */ for (i = 0 ; i <= m ; i++) mpz_init (R[i]); expR[1] = mpfr_get_z_2exp (R[1], r); /* exact operation: no error */ expR[1] = mpz_normalize2 (R[1], R[1], expR[1], 1 - q); /* error <= 1 ulp */ mpz_mul (t, R[1], R[1]); /* err(t) <= 2 ulps */ mpz_fdiv_q_2exp (R[2], t, q - 1); /* err(R[2]) <= 3 ulps */ expR[2] = 1 - q; for (i = 3 ; i <= m ; i++) { if ((i & 1) == 1) mpz_mul (t, R[i-1], R[1]); /* err(t) <= 2*i-2 */ else mpz_mul (t, R[i/2], R[i/2]); mpz_fdiv_q_2exp (R[i], t, q - 1); /* err(R[i]) <= 2*i-1 ulps */ expR[i] = 1 - q; } mpz_set_ui (R[0], 1); mpz_mul_2exp (R[0], R[0], q-1); expR[0] = 1-q; /* R[0]=1 */ mpz_set_ui (rr, 1); expr = 0; /* rr contains r^l/l! */ /* by induction: err(rr) <= 2*l ulps */ l = 0; ql = q; /* precision used for current giant step */ do { /* all R[i] must have exponent 1-ql */ if (l != 0) for (i = 0 ; i < m ; i++) expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1 - ql); /* the absolute error on R[i]*rr is still 2*i-1 ulps */ expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1 - ql); /* err(t) <= 2*m-1 ulps */ /* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)! using Horner's scheme */ for (i = m-1 ; i-- != 0 ; ) { mpz_fdiv_q_ui (t, t, l+i+1); /* err(t) += 1 ulp */ mpz_add (t, t, R[i]); } /* now err(t) <= (3m-2) ulps */ /* now multiplies t by r^l/l! and adds to s */ mpz_mul (t, t, rr); expt += expr; expt = mpz_normalize2 (t, t, expt, *exps); /* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */ MPFR_ASSERTD (expt == *exps); mpz_add (s, s, t); /* no error here */ /* updates rr, the multiplication of the factors l+i could be done using binary splitting too, but it is not sure it would save much */ mpz_mul (t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */ expr += expR[m]; mpz_set_ui (tmp, 1); for (i = 1 ; i <= m ; i++) mpz_mul_ui (tmp, tmp, l + i); mpz_fdiv_q (t, t, tmp); /* err(t) <= err(rr) + 2m */ l += m; if (MPFR_UNLIKELY (mpz_sgn (t) == 0)) break; expr += mpz_normalize (rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */ if (MPFR_UNLIKELY (mpz_sgn (rr) == 0)) rrbit = 1; else MPFR_MPZ_SIZEINBASE2 (rrbit, rr); MPFR_MPZ_SIZEINBASE2 (sbit, s); ql = q - *exps - sbit + expr + rrbit; /* TODO: Wrong cast. I don't want what is right, but this is certainly wrong */ } while ((size_t) expr + rrbit > (size_t) -q); for (i = 0 ; i <= m ; i++) mpz_clear (R[i]); MPFR_TMP_FREE(marker); mpz_clear (rr); mpz_clear (t); mpz_clear (tmp); return l * (l + 4); }