/* $NetBSD: vmwgfx_irq.c,v 1.6 2022/10/25 23:36:21 riastradh Exp $ */ // SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include __KERNEL_RCSID(0, "$NetBSD: vmwgfx_irq.c,v 1.6 2022/10/25 23:36:21 riastradh Exp $"); #include #include #include "vmwgfx_drv.h" #define VMW_FENCE_WRAP (1 << 24) /** * vmw_thread_fn - Deferred (process context) irq handler * * @irq: irq number * @arg: Closure argument. Pointer to a struct drm_device cast to void * * * This function implements the deferred part of irq processing. * The function is guaranteed to run at least once after the * vmw_irq_handler has returned with IRQ_WAKE_THREAD. * */ #ifdef __NetBSD__ static void vmw_thread_fn(struct work *work, void *arg) #else static irqreturn_t vmw_thread_fn(int irq, void *arg) #endif { struct drm_device *dev = (struct drm_device *)arg; struct vmw_private *dev_priv = vmw_priv(dev); irqreturn_t ret = IRQ_NONE; #ifdef __NetBSD__ atomic_store_relaxed(&dev_priv->irqthread_scheduled, false); #endif if (test_and_clear_bit(VMW_IRQTHREAD_FENCE, dev_priv->irqthread_pending)) { spin_lock(&dev_priv->fence_lock); vmw_fences_update(dev_priv->fman); DRM_SPIN_WAKEUP_ALL(&dev_priv->fence_queue, &dev_priv->fence_lock); spin_unlock(&dev_priv->fence_lock); ret = IRQ_HANDLED; } if (test_and_clear_bit(VMW_IRQTHREAD_CMDBUF, dev_priv->irqthread_pending)) { vmw_cmdbuf_irqthread(dev_priv->cman); ret = IRQ_HANDLED; } #ifndef __NetBSD__ return ret; #endif } /** * vmw_irq_handler irq handler * * @irq: irq number * @arg: Closure argument. Pointer to a struct drm_device cast to void * * * This function implements the quick part of irq processing. * The function performs fast actions like clearing the device interrupt * flags and also reasonably quick actions like waking processes waiting for * FIFO space. Other IRQ actions are deferred to the IRQ thread. */ static irqreturn_t vmw_irq_handler(int irq, void *arg) { struct drm_device *dev = (struct drm_device *)arg; struct vmw_private *dev_priv = vmw_priv(dev); uint32_t status, masked_status; irqreturn_t ret = IRQ_HANDLED; #ifdef __NetBSD__ status = bus_space_read_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT); #else status = inl(dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); #endif masked_status = status & READ_ONCE(dev_priv->irq_mask); if (likely(status)) #ifdef __NetBSD__ bus_space_write_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT, status); #else outl(status, dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); #endif if (!status) return IRQ_NONE; if (masked_status & SVGA_IRQFLAG_FIFO_PROGRESS) { spin_lock(&dev_priv->fifo_lock); DRM_SPIN_WAKEUP_ALL(&dev_priv->fifo_queue, &dev_priv->fifo_lock); spin_unlock(&dev_priv->fifo_lock); } if ((masked_status & (SVGA_IRQFLAG_ANY_FENCE | SVGA_IRQFLAG_FENCE_GOAL)) && !test_and_set_bit(VMW_IRQTHREAD_FENCE, dev_priv->irqthread_pending)) ret = IRQ_WAKE_THREAD; if ((masked_status & (SVGA_IRQFLAG_COMMAND_BUFFER | SVGA_IRQFLAG_ERROR)) && !test_and_set_bit(VMW_IRQTHREAD_CMDBUF, dev_priv->irqthread_pending)) ret = IRQ_WAKE_THREAD; #ifdef __NetBSD__ if (ret == IRQ_WAKE_THREAD) { if (atomic_swap_uint(&dev_priv->irqthread_scheduled, 1) == 0) { workqueue_enqueue(dev_priv->irqthread_wq, &dev_priv->irqthread_work, NULL); } ret = IRQ_HANDLED; } #endif return ret; } static bool vmw_fifo_idle(struct vmw_private *dev_priv, uint32_t seqno) { return (vmw_read(dev_priv, SVGA_REG_BUSY) == 0); } void vmw_update_seqno(struct vmw_private *dev_priv, struct vmw_fifo_state *fifo_state) { u32 *fifo_mem = dev_priv->mmio_virt; uint32_t seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE); assert_spin_locked(&dev_priv->fence_lock); if (dev_priv->last_read_seqno != seqno) { dev_priv->last_read_seqno = seqno; vmw_marker_pull(&fifo_state->marker_queue, seqno); vmw_fences_update(dev_priv->fman); } } bool vmw_seqno_passed(struct vmw_private *dev_priv, uint32_t seqno) { struct vmw_fifo_state *fifo_state; bool ret; assert_spin_locked(&dev_priv->fence_lock); if (likely(dev_priv->last_read_seqno - seqno < VMW_FENCE_WRAP)) return true; fifo_state = &dev_priv->fifo; vmw_update_seqno(dev_priv, fifo_state); if (likely(dev_priv->last_read_seqno - seqno < VMW_FENCE_WRAP)) return true; if (!(fifo_state->capabilities & SVGA_FIFO_CAP_FENCE) && vmw_fifo_idle(dev_priv, seqno)) return true; /** * Then check if the seqno is higher than what we've actually * emitted. Then the fence is stale and signaled. */ ret = ((atomic_read(&dev_priv->marker_seq) - seqno) > VMW_FENCE_WRAP); return ret; } int vmw_fallback_wait(struct vmw_private *dev_priv, bool lazy, bool fifo_idle, uint32_t seqno, bool interruptible, unsigned long timeout) { struct vmw_fifo_state *fifo_state = &dev_priv->fifo; uint32_t count = 0; uint32_t signal_seq; int ret; unsigned long end_jiffies = jiffies + timeout; bool (*wait_condition)(struct vmw_private *, uint32_t); #ifndef __NetBSD__ DEFINE_WAIT(__wait); #endif wait_condition = (fifo_idle) ? &vmw_fifo_idle : &vmw_seqno_passed; /** * Block command submission while waiting for idle. */ if (fifo_idle) { down_read(&fifo_state->rwsem); if (dev_priv->cman) { ret = vmw_cmdbuf_idle(dev_priv->cman, interruptible, 10*HZ); if (ret) goto out_err; } } spin_lock(&dev_priv->fence_lock); signal_seq = atomic_read(&dev_priv->marker_seq); ret = 0; for (;;) { #ifdef __NetBSD__ if (!lazy) { if (wait_condition(dev_priv, seqno)) break; spin_unlock(&dev_priv->fence_lock); if ((++count & 0xf) == 0) yield(); spin_lock(&dev_priv->fence_lock); } else if (interruptible) { DRM_SPIN_TIMED_WAIT_UNTIL(ret, &dev_priv->fence_queue, &dev_priv->fence_lock, /*timeout*/1, wait_condition(dev_priv, seqno)); } else { DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &dev_priv->fence_queue, &dev_priv->fence_lock, /*timeout*/1, wait_condition(dev_priv, seqno)); } if (ret) { /* success or error but not timeout */ if (ret > 0) /* success */ ret = 0; break; } if (time_after_eq(jiffies, end_jiffies)) { DRM_ERROR("SVGA device lockup.\n"); break; } #else prepare_to_wait(&dev_priv->fence_queue, &__wait, (interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (wait_condition(dev_priv, seqno)) break; if (time_after_eq(jiffies, end_jiffies)) { DRM_ERROR("SVGA device lockup.\n"); break; } if (lazy) schedule_timeout(1); else if ((++count & 0x0F) == 0) { /** * FIXME: Use schedule_hr_timeout here for * newer kernels and lower CPU utilization. */ __set_current_state(TASK_RUNNING); schedule(); __set_current_state((interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); } if (interruptible && signal_pending(current)) { ret = -ERESTARTSYS; break; } #endif } #ifndef __NetBSD__ finish_wait(&dev_priv->fence_queue, &__wait); #endif if (ret == 0 && fifo_idle) { u32 *fifo_mem = dev_priv->mmio_virt; vmw_mmio_write(signal_seq, fifo_mem + SVGA_FIFO_FENCE); } #ifdef __NetBSD__ DRM_SPIN_WAKEUP_ALL(&dev_priv->fence_queue, &dev_priv->fence_lock); spin_unlock(&dev_priv->fence_lock); #else wake_up_all(&dev_priv->fence_queue); #endif out_err: if (fifo_idle) up_read(&fifo_state->rwsem); return ret; } void vmw_generic_waiter_add(struct vmw_private *dev_priv, u32 flag, int *waiter_count) { spin_lock_bh(&dev_priv->waiter_lock); if ((*waiter_count)++ == 0) { #ifdef __NetBSD__ bus_space_write_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT, flag); #else outl(flag, dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); #endif dev_priv->irq_mask |= flag; vmw_write(dev_priv, SVGA_REG_IRQMASK, dev_priv->irq_mask); } spin_unlock_bh(&dev_priv->waiter_lock); } void vmw_generic_waiter_remove(struct vmw_private *dev_priv, u32 flag, int *waiter_count) { spin_lock_bh(&dev_priv->waiter_lock); if (--(*waiter_count) == 0) { dev_priv->irq_mask &= ~flag; vmw_write(dev_priv, SVGA_REG_IRQMASK, dev_priv->irq_mask); } spin_unlock_bh(&dev_priv->waiter_lock); } void vmw_seqno_waiter_add(struct vmw_private *dev_priv) { vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_ANY_FENCE, &dev_priv->fence_queue_waiters); } void vmw_seqno_waiter_remove(struct vmw_private *dev_priv) { vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_ANY_FENCE, &dev_priv->fence_queue_waiters); } void vmw_goal_waiter_add(struct vmw_private *dev_priv) { vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_FENCE_GOAL, &dev_priv->goal_queue_waiters); } void vmw_goal_waiter_remove(struct vmw_private *dev_priv) { vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_FENCE_GOAL, &dev_priv->goal_queue_waiters); } int vmw_wait_seqno(struct vmw_private *dev_priv, bool lazy, uint32_t seqno, bool interruptible, unsigned long timeout) { long ret; struct vmw_fifo_state *fifo = &dev_priv->fifo; spin_lock(&dev_priv->fence_lock); if (likely(dev_priv->last_read_seqno - seqno < VMW_FENCE_WRAP)) { spin_unlock(&dev_priv->fence_lock); return 0; } if (likely(vmw_seqno_passed(dev_priv, seqno))) { spin_unlock(&dev_priv->fence_lock); return 0; } vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); if (!(fifo->capabilities & SVGA_FIFO_CAP_FENCE)) { spin_unlock(&dev_priv->fence_lock); return vmw_fallback_wait(dev_priv, lazy, true, seqno, interruptible, timeout); } if (!(dev_priv->capabilities & SVGA_CAP_IRQMASK)) { spin_unlock(&dev_priv->fence_lock); return vmw_fallback_wait(dev_priv, lazy, false, seqno, interruptible, timeout); } vmw_seqno_waiter_add(dev_priv); if (interruptible) DRM_SPIN_TIMED_WAIT_UNTIL(ret, &dev_priv->fence_queue, &dev_priv->fence_lock, timeout, vmw_seqno_passed(dev_priv, seqno)); else DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, &dev_priv->fence_queue, &dev_priv->fence_lock, timeout, vmw_seqno_passed(dev_priv, seqno)); vmw_seqno_waiter_remove(dev_priv); spin_unlock(&dev_priv->fence_lock); if (unlikely(ret == 0)) ret = -EBUSY; else if (likely(ret > 0)) ret = 0; return ret; } static void vmw_irq_preinstall(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); uint32_t status; #ifdef __NetBSD__ status = bus_space_read_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT); bus_space_write_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT, status); #else status = inl(dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); outl(status, dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); #endif } void vmw_irq_uninstall(struct drm_device *dev) { struct vmw_private *dev_priv = vmw_priv(dev); uint32_t status; if (!(dev_priv->capabilities & SVGA_CAP_IRQMASK)) return; if (!dev->irq_enabled) return; vmw_write(dev_priv, SVGA_REG_IRQMASK, 0); #ifdef __NetBSD__ status = bus_space_read_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT); bus_space_write_4(dev_priv->iot, dev_priv->ioh, VMWGFX_IRQSTATUS_PORT, status); #else status = inl(dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); outl(status, dev_priv->io_start + VMWGFX_IRQSTATUS_PORT); #endif dev->irq_enabled = false; #ifdef __NetBSD__ int ret = drm_irq_uninstall(dev); KASSERT(ret == 0); workqueue_destroy(dev_priv->irqthread_wq); #else free_irq(dev->irq, dev); #endif } /** * vmw_irq_install - Install the irq handlers * * @dev: Pointer to the drm device. * @irq: The irq number. * Return: Zero if successful. Negative number otherwise. */ int vmw_irq_install(struct drm_device *dev, int irq) { int ret; if (dev->irq_enabled) return -EBUSY; vmw_irq_preinstall(dev); #ifdef __NetBSD__ /* XXX errno NetBSD->Linux */ ret = -workqueue_create(&vmw_priv(dev)->irqthread_wq, "vmwgfirq", vmw_thread_fn, dev, PRI_NONE, IPL_DRM, WQ_MPSAFE); if (ret < 0) return ret; ret = drm_irq_install(dev); if (ret < 0) { workqueue_destroy(vmw_priv(dev)->irqthread_wq); vmw_priv(dev)->irqthread_wq = NULL; } #else ret = request_threaded_irq(irq, vmw_irq_handler, vmw_thread_fn, IRQF_SHARED, VMWGFX_DRIVER_NAME, dev); #endif if (ret < 0) return ret; dev->irq_enabled = true; dev->irq = irq; return ret; }