/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_cfg.h" #include "brw_fs_live_variables.h" using namespace brw; #define MAX_INSTRUCTION (1 << 30) /** @file brw_fs_live_variables.cpp * * Support for calculating liveness information about virtual GRFs. * * This produces a live interval for each whole virtual GRF. We could * choose to expose per-component live intervals for VGRFs of size > 1, * but we currently do not. It is easier for the consumers of this * information to work with whole VGRFs. * * However, we internally track use/def information at the per-component * (reg_offset) level for greater accuracy. Large VGRFs may be accessed * piecemeal over many (possibly non-adjacent) instructions. In this case, * examining a single instruction is insufficient to decide whether a whole * VGRF is ultimately used or defined. Tracking individual components * allows us to easily assemble this information. * * See Muchnick's Advanced Compiler Design and Implementation, section * 14.1 (p444). */ void fs_live_variables::setup_one_read(bblock_t *block, fs_inst *inst, int ip, fs_reg reg) { int var = var_from_vgrf[reg.reg] + reg.reg_offset; assert(var < num_vars); /* In most cases, a register can be written over safely by the * same instruction that is its last use. For a single * instruction, the sources are dereferenced before writing of the * destination starts (naturally). This gets more complicated for * simd16, because the instruction: * * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F * * is actually decoded in hardware as: * * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F * * Which is safe. However, if we have uniform accesses * happening, we get into trouble: * * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F * * Now our destination for the first instruction overwrote the * second instruction's src0, and we get garbage for those 8 * pixels. There's a similar issue for the pre-gen6 * pixel_x/pixel_y, which are registers of 16-bit values and thus * would get stomped by the first decode as well. */ int end_ip = ip; if (v->dispatch_width == 16 && (reg.stride == 0 || reg.type == BRW_REGISTER_TYPE_UW || reg.type == BRW_REGISTER_TYPE_W || reg.type == BRW_REGISTER_TYPE_UB || reg.type == BRW_REGISTER_TYPE_B)) { end_ip++; } start[var] = MIN2(start[var], ip); end[var] = MAX2(end[var], end_ip); /* The use[] bitset marks when the block makes use of a variable (VGRF * channel) without having completely defined that variable within the * block. */ if (!BITSET_TEST(bd[block->num].def, var)) BITSET_SET(bd[block->num].use, var); } void fs_live_variables::setup_one_write(bblock_t *block, fs_inst *inst, int ip, fs_reg reg) { int var = var_from_vgrf[reg.reg] + reg.reg_offset; assert(var < num_vars); start[var] = MIN2(start[var], ip); end[var] = MAX2(end[var], ip); /* The def[] bitset marks when an initialization in a block completely * screens off previous updates of that variable (VGRF channel). */ if (inst->dst.file == GRF && !inst->is_partial_write()) { if (!BITSET_TEST(bd[block->num].use, var)) BITSET_SET(bd[block->num].def, var); } } /** * Sets up the use[] and def[] bitsets. * * The basic-block-level live variable analysis needs to know which * variables get used before they're completely defined, and which * variables are completely defined before they're used. * * These are tracked at the per-component level, rather than whole VGRFs. */ void fs_live_variables::setup_def_use() { int ip = 0; foreach_block (block, cfg) { assert(ip == block->start_ip); if (block->num > 0) assert(cfg->blocks[block->num - 1]->end_ip == ip - 1); foreach_inst_in_block(fs_inst, inst, block) { /* Set use[] for this instruction */ for (unsigned int i = 0; i < inst->sources; i++) { fs_reg reg = inst->src[i]; if (reg.file != GRF) continue; for (int j = 0; j < inst->regs_read(v, i); j++) { setup_one_read(block, inst, ip, reg); reg.reg_offset++; } } /* Set def[] for this instruction */ if (inst->dst.file == GRF) { fs_reg reg = inst->dst; for (int j = 0; j < inst->regs_written; j++) { setup_one_write(block, inst, ip, reg); reg.reg_offset++; } } ip++; } } } /** * The algorithm incrementally sets bits in liveout and livein, * propagating it through control flow. It will eventually terminate * because it only ever adds bits, and stops when no bits are added in * a pass. */ void fs_live_variables::compute_live_variables() { bool cont = true; while (cont) { cont = false; foreach_block (block, cfg) { /* Update livein */ for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_livein = (bd[block->num].use[i] | (bd[block->num].liveout[i] & ~bd[block->num].def[i])); if (new_livein & ~bd[block->num].livein[i]) { bd[block->num].livein[i] |= new_livein; cont = true; } } /* Update liveout */ foreach_list_typed(bblock_link, child_link, link, &block->children) { bblock_t *child = child_link->block; for (int i = 0; i < bitset_words; i++) { BITSET_WORD new_liveout = (bd[child->num].livein[i] & ~bd[block->num].liveout[i]); if (new_liveout) { bd[block->num].liveout[i] |= new_liveout; cont = true; } } } } } } /** * Extend the start/end ranges for each variable to account for the * new information calculated from control flow. */ void fs_live_variables::compute_start_end() { foreach_block (block, cfg) { for (int i = 0; i < num_vars; i++) { if (BITSET_TEST(bd[block->num].livein, i)) { start[i] = MIN2(start[i], block->start_ip); end[i] = MAX2(end[i], block->start_ip); } if (BITSET_TEST(bd[block->num].liveout, i)) { start[i] = MIN2(start[i], block->end_ip); end[i] = MAX2(end[i], block->end_ip); } } } } int fs_live_variables::var_from_reg(fs_reg *reg) { return var_from_vgrf[reg->reg] + reg->reg_offset; } fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg) : v(v), cfg(cfg) { mem_ctx = ralloc_context(NULL); num_vgrfs = v->virtual_grf_count; num_vars = 0; var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs); for (int i = 0; i < num_vgrfs; i++) { var_from_vgrf[i] = num_vars; num_vars += v->virtual_grf_sizes[i]; } vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars); for (int i = 0; i < num_vgrfs; i++) { for (int j = 0; j < v->virtual_grf_sizes[i]; j++) { vgrf_from_var[var_from_vgrf[i] + j] = i; } } start = ralloc_array(mem_ctx, int, num_vars); end = rzalloc_array(mem_ctx, int, num_vars); for (int i = 0; i < num_vars; i++) { start[i] = MAX_INSTRUCTION; end[i] = -1; } bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks); bitset_words = BITSET_WORDS(num_vars); for (int i = 0; i < cfg->num_blocks; i++) { bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words); } setup_def_use(); compute_live_variables(); compute_start_end(); } fs_live_variables::~fs_live_variables() { ralloc_free(mem_ctx); } void fs_visitor::invalidate_live_intervals() { ralloc_free(live_intervals); live_intervals = NULL; invalidate_cfg(); } /** * Compute the live intervals for each virtual GRF. * * This uses the per-component use/def data, but combines it to produce * information about whole VGRFs. */ void fs_visitor::calculate_live_intervals() { if (this->live_intervals) return; int num_vgrfs = this->virtual_grf_count; ralloc_free(this->virtual_grf_start); ralloc_free(this->virtual_grf_end); virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs); virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs); for (int i = 0; i < num_vgrfs; i++) { virtual_grf_start[i] = MAX_INSTRUCTION; virtual_grf_end[i] = -1; } calculate_cfg(); this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg); /* Merge the per-component live ranges to whole VGRF live ranges. */ for (int i = 0; i < live_intervals->num_vars; i++) { int vgrf = live_intervals->vgrf_from_var[i]; virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf], live_intervals->start[i]); virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf], live_intervals->end[i]); } } bool fs_live_variables::vars_interfere(int a, int b) { return !(end[b] <= start[a] || end[a] <= start[b]); } bool fs_visitor::virtual_grf_interferes(int a, int b) { return !(virtual_grf_end[a] <= virtual_grf_start[b] || virtual_grf_end[b] <= virtual_grf_start[a]); }