This is screen.info, produced by makeinfo version 4.5 from ./screen.texinfo. INFO-DIR-SECTION General Commands START-INFO-DIR-ENTRY * Screen: (screen). Full-screen window manager. END-INFO-DIR-ENTRY This file documents the `Screen' virtual terminal manager. Copyright (c) 1993-2003 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation.  File: screen.info, Node: Input Translation, Next: Digraph, Prev: Control Sequences, Up: Virtual Terminal Input Translation ================= In order to do a full VT100 emulation `screen' has to detect that a sequence of characters in the input stream was generated by a keypress on the user's keyboard and insert the VT100 style escape sequence. `Screen' has a very flexible way of doing this by making it possible to map arbitrary commands on arbitrary sequences of characters. For standard VT100 emulation the command will always insert a string in the input buffer of the window (see also command `stuff', *note Paste::). Because the sequences generated by a keypress can change after a reattach from a different terminal type, it is possible to bind commands to the termcap name of the keys. `Screen' will insert the correct binding after each reattach. See *Note Bindkey:: for further details on the syntax and examples. Here is the table of the default key bindings. (A) means that the command is executed if the keyboard is switched into application mode. Key name Termcap name Command ----------------------------------------------------- Cursor up ku stuff \033[A stuff \033OA (A) Cursor down kd stuff \033[B stuff \033OB (A) Cursor right kr stuff \033[C stuff \033OC (A) Cursor left kl stuff \033[D stuff \033OD (A) Function key 0 k0 stuff \033[10~ Function key 1 k1 stuff \033OP Function key 2 k2 stuff \033OQ Function key 3 k3 stuff \033OR Function key 4 k4 stuff \033OS Function key 5 k5 stuff \033[15~ Function key 6 k6 stuff \033[17~ Function key 7 k7 stuff \033[18~ Function key 8 k8 stuff \033[19~ Function key 9 k9 stuff \033[20~ Function key 10 k; stuff \033[21~ Function key 11 F1 stuff \033[23~ Function key 12 F2 stuff \033[24~ Home kh stuff \033[1~ End kH stuff \033[4~ Insert kI stuff \033[2~ Delete kD stuff \033[3~ Page up kP stuff \033[5~ Page down kN stuff \033[6~ Keypad 0 f0 stuff 0 stuff \033Op (A) Keypad 1 f1 stuff 1 stuff \033Oq (A) Keypad 2 f2 stuff 2 stuff \033Or (A) Keypad 3 f3 stuff 3 stuff \033Os (A) Keypad 4 f4 stuff 4 stuff \033Ot (A) Keypad 5 f5 stuff 5 stuff \033Ou (A) Keypad 6 f6 stuff 6 stuff \033Ov (A) Keypad 7 f7 stuff 7 stuff \033Ow (A) Keypad 8 f8 stuff 8 stuff \033Ox (A) Keypad 9 f9 stuff 9 stuff \033Oy (A) Keypad + f+ stuff + stuff \033Ok (A) Keypad - f- stuff - stuff \033Om (A) Keypad * f* stuff * stuff \033Oj (A) Keypad / f/ stuff / stuff \033Oo (A) Keypad = fq stuff = stuff \033OX (A) Keypad . f. stuff . stuff \033On (A) Keypad , f, stuff , stuff \033Ol (A) Keypad enter fe stuff \015 stuff \033OM (A)  File: screen.info, Node: Digraph, Next: Bell, Prev: Input Translation, Up: Virtual Terminal Digraph ======= - Command: digraph [preset] (none) This command prompts the user for a digraph sequence. The next two characters typed are looked up in a builtin table and the resulting character is inserted in the input stream. For example, if the user enters `a"', an a-umlaut will be inserted. If the first character entered is a 0 (zero), `screen' will treat the following characters (up to three) as an octal number instead. The optional argument PRESET is treated as user input, thus one can create an "umlaut" key. For example the command `bindkey ^K digraph '"'' enables the user to generate an a-umlaut by typing `CTRL-K a'.  File: screen.info, Node: Bell, Next: Clear, Prev: Digraph, Up: Virtual Terminal Bell ==== - Command: bell_msg [message] (none) When a bell character is sent to a background window, `screen' displays a notification in the message line. The notification message can be re-defined by this command. Each occurrence of `%' in MESSAGE is replaced by the number of the window to which a bell has been sent, and each occurrence of `^G' is replaced by the definition for bell in your termcap (usually an audible bell). The default message is 'Bell in window %n' An empty message can be supplied to the `bell_msg' command to suppress output of a message line (`bell_msg ""'). Without parameter, the current message is shown. - Command: vbell [state] (`C-a C-g') Sets or toggles the visual bell setting for the current window. If `vbell' is switched to `on', but your terminal does not support a visual bell, the visual bell message is displayed in the status line when the bell character is received. Visual bell support of a terminal is defined by the termcap variable `vb'. *Note Visual Bell: (termcap)Bell, for more information on visual bells. The equivalent terminfo capability is `flash'. Per default, `vbell' is `off', thus the audible bell is used. - Command: vbell_msg [message] (none) Sets the visual bell message. MESSAGE is printed to the status line if the window receives a bell character (^G), `vbell' is set to `on' and the terminal does not support a visual bell. The default message is `Wuff, Wuff!!'. Without parameter, the current message is shown. - Command: vbellwait sec (none) Define a delay in seconds after each display of `screen' 's visual bell message. The default is 1 second.  File: screen.info, Node: Clear, Next: Info, Prev: Bell, Up: Virtual Terminal Clear ===== - Command: clear (`C-a C') Clears the screen and saves its contents to the scrollback buffer.  File: screen.info, Node: Info, Next: Redisplay, Prev: Clear, Up: Virtual Terminal Info ==== - Command: info (`C-a i', `C-a C-i') Uses the message line to display some information about the current window: the cursor position in the form `(COLUMN,ROW)' starting with `(1,1)', the terminal width and height plus the size of the scrollback buffer in lines, like in `(80,24)+50', the current state of window XON/XOFF flow control is shown like this (*note Flow Control::): +flow automatic flow control, currently on. -flow automatic flow control, currently off. +(+)flow flow control enabled. Agrees with automatic control. -(+)flow flow control disabled. Disagrees with automatic control. +(-)flow flow control enabled. Disagrees with automatic control. -(-)flow flow control disabled. Agrees with automatic control. The current line wrap setting (`+wrap' indicates enabled, `-wrap' not) is also shown. The flags `ins', `org', `app', `log', `mon' and `nored' are displayed when the window is in insert mode, origin mode, application-keypad mode, has output logging, activity monitoring or partial redraw enabled. The currently active character set (`G0', `G1', `G2', or `G3'), and in square brackets the terminal character sets that are currently designated as `G0' through `G3'. If the window is in UTF-8 mode, the string `UTF-8' is shown instead. Additional modes depending on the type of the window are displayed at the end of the status line (*note Window Types::). If the state machine of the terminal emulator is in a non-default state, the info line is started with a string identifying the current state. For system information use `time'. - Command: dinfo (none) Show what screen thinks about your terminal. Useful if you want to know why features like color or the alternate charset don't work.  File: screen.info, Node: Redisplay, Next: Wrap, Prev: Info, Up: Virtual Terminal Redisplay ========= - Command: allpartial state (none) If set to on, only the current cursor line is refreshed on window change. This affects all windows and is useful for slow terminal lines. The previous setting of full/partial refresh for each window is restored with `allpartial off'. This is a global flag that immediately takes effect on all windows overriding the `partial' settings. It does not change the default redraw behavior of newly created windows. - Command: altscreen state (none) If set to on, "alternate screen" support is enabled in virtual terminals, just like in xterm. Initial setting is `off'. - Command: partial state (none) Defines whether the display should be refreshed (as with `redisplay') after switching to the current window. This command only affects the current window. To immediately affect all windows use the `allpartial' command. Default is `off', of course. This default is fixed, as there is currently no `defpartial' command. - Command: redisplay (`C-a l', `C-a C-l') Redisplay the current window. Needed to get a full redisplay in partial redraw mode.  File: screen.info, Node: Wrap, Next: Reset, Prev: Redisplay, Up: Virtual Terminal Wrap ==== - Command: wrap state (`C-a r', `C-a C-r') Sets the line-wrap setting for the current window. When line-wrap is on, the second consecutive printable character output at the last column of a line will wrap to the start of the following line. As an added feature, backspace (^H) will also wrap through the left margin to the previous line. Default is `on'. - Command: defwrap state (none) Same as the `wrap' command except that the default setting for new windows is changed. Initially line-wrap is on and can be toggled with the `wrap' command (`C-a r') or by means of "C-a : wrap on|off".  File: screen.info, Node: Reset, Next: Window Size, Prev: Wrap, Up: Virtual Terminal Reset ===== - Command: reset (`C-a Z') Reset the virtual terminal to its "power-on" values. Useful when strange settings (like scroll regions or graphics character set) are left over from an application.  File: screen.info, Node: Window Size, Next: Character Processing, Prev: Reset, Up: Virtual Terminal Window Size =========== - Command: width [`-w'|`-d'] [cols [lines]] (`C-a W') Toggle the window width between 80 and 132 columns, or set it to COLS columns if an argument is specified. This requires a capable terminal and the termcap entries `Z0' and `Z1'. See the `termcap' command (*note Termcap::), for more information. You can also specify a height if you want to change both values. The `-w' option tells screen to leave the display size unchanged and just set the window size, `-d' vice versa. - Command: height [`-w'|`-d'] [lines [cols]] (none) Set the display height to a specified number of lines. When no argument is given it toggles between 24 and 42 lines display.  File: screen.info, Node: Character Processing, Prev: Window Size, Up: Virtual Terminal Character Processing ==================== - Command: c1 [state] (none) Change c1 code processing. `c1 on' tells screen to treat the input characters between 128 and 159 as control functions. Such an 8-bit code is normally the same as ESC followed by the corresponding 7-bit code. The default setting is to process c1 codes and can be changed with the `defc1' command. Users with fonts that have usable characters in the c1 positions may want to turn this off. - Command: gr [state] (none) Turn GR charset switching on/off. Whenever screen sees an input char with an 8th bit set, it will use the charset stored in the GR slot and print the character with the 8th bit stripped. The default (see also `defgr') is not to process GR switching because otherwise the ISO88591 charset would not work. - Command: bce [state] (none) Change background-color-erase setting. If `bce' is set to on, all characters cleared by an erase/insert/scroll/clear operation will be displayed in the current background color. Otherwise the default background color is used. - Command: encoding enc [denc] (none) Tell screen how to interpret the input/output. The first argument sets the encoding of the current window. Each window can emulate a different encoding. The optional second parameter overwrites the encoding of the connected terminal. It should never be needed as screen uses the locale setting to detect the encoding. There is also a way to select a terminal encoding depending on the terminal type by using the `KJ' termcap entry. *Note Special Capabilities::. Supported encodings are `eucJP', `SJIS', `eucKR', `eucCN', `Big5', `GBK', `KOI8-R', `CP1251', `UTF-8', `ISO8859-2', `ISO8859-3', `ISO8859-4', `ISO8859-5', `ISO8859-6', `ISO8859-7', `ISO8859-8', `ISO8859-9', `ISO8859-10', `ISO8859-15', `jis'. See also `defencoding', which changes the default setting of a new window. - Command: charset set (none) Change the current character set slot designation and charset mapping. The first four character of SET are treated as charset designators while the fifth and sixth character must be in range `0' to `3' and set the GL/GR charset mapping. On every position a `.' may be used to indicate that the corresponding charset/mapping should not be changed (SET is padded to six characters internally by appending `.' chars). New windows have `BBBB02' as default charset, unless a `encoding' command is active. The current setting can be viewed with the *Note Info:: command. - Command: utf8 [state [dstate]] (none) Change the encoding used in the current window. If utf8 is enabled, the strings sent to the window will be UTF-8 encoded and vice versa. Omitting the parameter toggles the setting. If a second parameter is given, the display's encoding is also changed (this should rather be done with screen's `-U' option). See also `defutf8', which changes the default setting of a new window. - Command: defc1 state (none) Same as the `c1' command except that the default setting for new windows is changed. Initial setting is `on'. - Command: defgr state (none) Same as the `gr' command except that the default setting for new windows is changed. Initial setting is `off'. - Command: defbce state (none) Same as the `bce' command except that the default setting for new windows is changed. Initial setting is `off'. - Command: defencoding enc (none) Same as the `encoding' command except that the default setting for new windows is changed. Initial setting is the encoding taken from the terminal. - Command: defcharset [set] Like the `charset' command except that the default setting for new windows is changed. Shows current default if called without argument. - Command: defutf8 state (none) Same as the `utf8' command except that the default setting for new windows is changed. Initial setting is `on' if screen was started with `-U', otherwise `off'.  File: screen.info, Node: Copy and Paste, Next: Subprocess Execution, Prev: Virtual Terminal, Up: Top Copy and Paste ************** For those confined to a hardware terminal, these commands provide a cut and paste facility more powerful than those provided by most windowing systems. * Menu: * Copy:: Copy from scrollback to buffer * Paste:: Paste from buffer into window * Registers:: Longer-term storage * Screen Exchange:: Sharing data between screen users * History:: Recalling previous input  File: screen.info, Node: Copy, Next: Paste, Up: Copy and Paste Copying ======= - Command: copy (`C-a [', `C-a C-[', `C-a ') Enter copy/scrollback mode. This allows you to copy text from the current window and its history into the paste buffer. In this mode a `vi'-like full screen editor is active, with controls as outlined below. * Menu: * Line Termination:: End copied lines with CR/LF * Scrollback:: Set the size of the scrollback buffer * Copy Mode Keys:: Remap keys in copy mode * Movement:: Move around in the scrollback buffer * Marking:: Select the text you want * Repeat count:: Repeat a command * Searching:: Find the text you want * Specials:: Other random keys  File: screen.info, Node: Line Termination, Next: Scrollback, Up: Copy CR/LF ----- - Command: crlf [state] (none) This affects the copying of text regions with the `C-a [' command. If it is set to `on', lines will be separated by the two character sequence `CR'/`LF'. Otherwise only `LF' is used. `crlf' is off by default. When no parameter is given, the state is toggled.  File: screen.info, Node: Scrollback, Next: Copy Mode Keys, Prev: Line Termination, Up: Copy Scrollback ---------- - Command: defscrollback num (none) Same as the `scrollback' command except that the default setting for new windows is changed. Defaults to 100. - Command: scrollback num (none) Set the size of the scrollback buffer for the current window to NUM lines. The default scrollback is 100 lines. Use `C-a i' to view the current setting. - Command: compacthist [state] (none) This tells screen whether to suppress trailing blank lines when scrolling up text into the history buffer. Turn compacting `on' to hold more useful lines in your scrollback buffer.  File: screen.info, Node: Copy Mode Keys, Next: Movement, Prev: Scrollback, Up: Copy markkeys -------- - Command: markkeys string (none) This is a method of changing the keymap used for copy/history mode. The string is made up of OLDCHAR=NEWCHAR pairs which are separated by `:'. Example: The command `markkeys h=^B:l=^F:$=^E' would set some keys to be more familiar to `emacs' users. If your terminal sends characters, that cause you to abort copy mode, then this command may help by binding these characters to do nothing. The no-op character is `a'nd is used like this: `markkeys @=L=H' if you do not want to use the `H' or `L' commands any longer. As shown in this example, multiple keys can be assigned to one function in a single statement.  File: screen.info, Node: Movement, Next: Marking, Prev: Copy Mode Keys, Up: Copy Movement Keys ------------- `h', `j', `k', `l' move the cursor line by line or column by column. `0', `^' and `$' move to the leftmost column or to the first or last non-whitespace character on the line. `H', `M' and `L' move the cursor to the leftmost column of the top, center or bottom line of the window. `+' and `-' move the cursor to the leftmost column of the next or previous line. `G' moves to the specified absolute line (default: end of buffer). `|' moves to the specified absolute column. `w', `b', `e' move the cursor word by word. `B', `E' move the cursor WORD by WORD (as in vi). `C-u' and `C-d' scroll the display up/down by the specified amount of lines while preserving the cursor position. (Default: half screenfull). `C-b' and `C-f' move the cursor up/down a full screen. `g' moves to the beginning of the buffer. `%' jumps to the specified percentage of the buffer. Note that Emacs-style movement keys can be specified by a .screenrc command. (`markkeys "h=^B:l=^F:$=^E"') There is no simple method for a full emacs-style keymap, however, as this involves multi-character codes.  File: screen.info, Node: Marking, Next: Repeat count, Prev: Movement, Up: Copy Marking ------- The copy range is specified by setting two marks. The text between these marks will be highlighted. Press `space' to set the first or second mark respectively. `Y' and `y' can be used to mark one whole line or to mark from start of line. `W' marks exactly one word.  File: screen.info, Node: Repeat count, Next: Searching, Prev: Marking, Up: Copy Repeat Count ------------ Any command in copy mode can be prefixed with a number (by pressing digits `0...9') which is taken as a repeat count. Example: `C-a C-[ H 10 j 5 Y' will copy lines 11 to 15 into the paste buffer.  File: screen.info, Node: Searching, Next: Specials, Prev: Repeat count, Up: Copy Searching --------- `/' `vi'-like search forward. `?' `vi'-like search backward. `C-a s' `emacs' style incremental search forward. `C-r' `emacs' style reverse i-search. - Command: ignorecase [state] (none) Tell screen to ignore the case of characters in searches. Default is `off'.  File: screen.info, Node: Specials, Prev: Searching, Up: Copy Specials -------- There are, however, some keys that act differently here from in `vi'. `Vi' does not allow to yank rectangular blocks of text, but `screen' does. Press `c' or `C' to set the left or right margin respectively. If no repeat count is given, both default to the current cursor position. Example: Try this on a rather full text screen: `C-a [ M 20 l SPACE c 10 l 5 j C SPACE'. This moves one to the middle line of the screen, moves in 20 columns left, marks the beginning of the paste buffer, sets the left column, moves 5 columns down, sets the right column, and then marks the end of the paste buffer. Now try: `C-a [ M 20 l SPACE 10 l 5 j SPACE' and notice the difference in the amount of text copied. `J' joins lines. It toggles between 4 modes: lines separated by a newline character (012), lines glued seamless, lines separated by a single space or comma separated lines. Note that you can prepend the newline character with a carriage return character, by issuing a `set crlf on'. `v' is for all the `vi' users who use `:set numbers' - it toggles the left margin between column 9 and 1. `a' before the final space key turns on append mode. Thus the contents of the paste buffer will not be overwritten, but appended to. `A' turns on append mode and sets a (second) mark. `>' sets the (second) mark and writes the contents of the paste buffer to the screen-exchange file (`/tmp/screen-exchange' per default) once copy-mode is finished. *Note Screen Exchange::. This example demonstrates how to dump the whole scrollback buffer to that file: `C-a [ g SPACE G $ >'. `C-g' gives information about the current line and column. `x' exchanges the first mark and the current cursor position. You can use this to adjust an already placed mark. `@' does nothing. Absolutely nothing. Does not even exit copy mode. All keys not described here exit copy mode.  File: screen.info, Node: Paste, Next: Registers, Prev: Copy, Up: Copy and Paste Paste ===== - Command: paste [registers [destination]] (`C-a ]', `C-a C-]') Write the (concatenated) contents of the specified registers to the stdin stream of the current window. The register `.' is treated as the paste buffer. If no parameter is specified the user is prompted to enter a single register. The paste buffer can be filled with the `copy', `history' and `readbuf' commands. Other registers can be filled with the `register', `readreg' and `paste' commands. If `paste' is called with a second argument, the contents of the specified registers is pasted into the named destination register rather than the window. If `.' is used as the second argument, the display's paste buffer is the destination. Note, that `paste' uses a wide variety of resources: Usually both, a current window and a current display are required. But whenever a second argument is specified no current window is needed. When the source specification only contains registers (not the paste buffer) then there need not be a current display (terminal attached), as the registers are a global resource. The paste buffer exists once for every user. - Command: stuff string (none) Stuff the string STRING in the input buffer of the current window. This is like the `paste' command, but with much less overhead. You cannot paste large buffers with the `stuff' command. It is most useful for key bindings. *Note Bindkey::. - Command: pastefont [state] Tell screen to include font information in the paste buffer. The default is not to do so. This command is especially useful for multi character fonts like kanji. - Command: slowpaste msec - Command: defslowpaste msec (none) Define the speed text is inserted in the current window by the `paste' command. If the slowpaste value is nonzero text is written character by character. `screen' will pause for MSEC milliseconds after each write to allow the application to process the input. only use `slowpaste' if your underlying system exposes flow control problems while pasting large amounts of text. `defslowpaste' specifies the default for new windows. - Command: readreg [-e encoding] [register [filename]] (none) Does one of two things, dependent on number of arguments: with zero or one arguments it it duplicates the paste buffer contents into the register specified or entered at the prompt. With two arguments it reads the contents of the named file into the register, just as `readbuf' reads the screen-exchange file into the paste buffer. You can tell screen the encoding of the file via the `-e' option. The following example will paste the system's password file into the screen window (using register p, where a copy remains): C-a : readreg p /etc/passwd C-a : paste p  File: screen.info, Node: Registers, Next: Screen Exchange, Prev: Paste, Up: Copy and Paste Registers ========= - Command: copy_reg [key] (none) Removed. Use `readreg' instead. - Command: ins_reg [key] (none) Removed. Use `paste' instead. - Command: process [key] (none) Stuff the contents of the specified register into the `screen' input queue. If no argument is given you are prompted for a register name. The text is parsed as if it had been typed in from the user's keyboard. This command can be used to bind multiple actions to a single key. - Command: register [-e encoding] key string (none) Save the specified STRING to the register KEY. The encoding of the string can be specified via the `-e' option.  File: screen.info, Node: Screen Exchange, Next: History, Prev: Registers, Up: Copy and Paste Screen Exchange =============== - Command: bufferfile [EXCHANGE-FILE] (none) Change the filename used for reading and writing with the paste buffer. If the EXCHANGE-FILE parameter is omitted, `screen' reverts to the default of `/tmp/screen-exchange'. The following example will paste the system's password file into the screen window (using the paste buffer, where a copy remains): C-a : bufferfile /etc/passwd C-a < C-a ] C-a : bufferfile - Command: readbuf [-e ENCODING] [FILENAME] (`C-a <') Reads the contents of the specified file into the paste buffer. You can tell screen the encoding of the file via the `-e' option. If no file is specified, the screen-exchange filename is used. - Command: removebuf (`C-a =') Unlinks the screen-exchange file. - Command: writebuf [-e ENCODING] [FILENAME] (`C-a >') Writes the contents of the paste buffer to the specified file, or the public accessible screen-exchange file if no filename is given. This is thought of as a primitive means of communication between `screen' users on the same host. If an encoding is specified the paste buffer is recoded on the fly to match the encoding. See also `C-a ' (*note Copy::).  File: screen.info, Node: History, Prev: Screen Exchange, Up: Copy and Paste History ======= - Command: history (`C-a {') Usually users work with a shell that allows easy access to previous commands. For example, `csh' has the command `!!' to repeat the last command executed. `screen' provides a primitive way of recalling "the command that started ...": You just type the first letter of that command, then hit `C-a {' and `screen' tries to find a previous line that matches with the prompt character to the left of the cursor. This line is pasted into this window's input queue. Thus you have a crude command history (made up by the visible window and its scrollback buffer).  File: screen.info, Node: Subprocess Execution, Next: Key Binding, Prev: Copy and Paste, Up: Top Subprocess Execution ******************** Control Input or Output of a window by another filter process. Use with care! * Menu: * Exec:: The `exec' command syntax. * Using Exec:: Weird things that filters can do.  File: screen.info, Node: Exec, Next: Using Exec, Up: Subprocess Execution Exec ==== - Command: exec [[FDPAT] NEWCOMMAND [ARGS ... ]] (none) Run a unix subprocess (specified by an executable path NEWCOMMAND and its optional arguments) in the current window. The flow of data between newcommands stdin/stdout/stderr, the process originally started (let us call it "application-process") and screen itself (window) is controlled by the filedescriptor pattern FDPAT. This pattern is basically a three character sequence representing stdin, stdout and stderr of newcommand. A dot (`.') connects the file descriptor to screen. An exclamation mark (`!') causes the file descriptor to be connected to the application-process. A colon (`:') combines both. User input will go to newcommand unless newcommand receives the application-process' output (FDPATs first character is `!' or `:') or a pipe symbol (`|') is added to the end of FDPAT. Invoking `exec' without arguments shows name and arguments of the currently running subprocess in this window. Only one subprocess can be running per window. When a subprocess is running the `kill' command will affect it instead of the windows process. Only one subprocess a time can be running in each window. Refer to the postscript file `doc/fdpat.ps' for a confusing illustration of all 21 possible combinations. Each drawing shows the digits 2, 1, 0 representing the three file descriptors of newcommand. The box marked `W' is usual pty that has the application-process on its slave side. The box marked `P' is the secondary pty that now has screen at its master side.  File: screen.info, Node: Using Exec, Prev: Exec, Up: Subprocess Execution Using Exec ========== Abbreviations: * Whitespace between the word `exec' and FDPAT and the command name can be omitted. * Trailing dots and a FDPAT consisting only of dots can be omitted. * A simple `|' is synonymous for the `!..|' pattern. * The word `exec' can be omitted when the `|' abbreviation is used. * The word `exec' can always be replaced by leading `!'. Examples: `!/bin/sh' `exec /bin/sh' `exec ... /bin/sh' All of the above are equivalent. Creates another shell in the same window, while the original shell is still running. Output of both shells is displayed and user input is sent to the new `/bin/sh'. `!!stty 19200' `exec!stty 19200' `exec !.. stty 19200' All of the above are equivalent. Set the speed of the window's tty. If your stty command operates on stdout, then add another `!'. This is a useful command, when a screen window is directly connected to a serial line that needs to be configured. `|less' `exec !..| less' Both are equivalent. This adds a pager to the window output. The special character `|' is needed to give the user control over the pager although it gets its input from the window's process. This works, because `less' listens on stderr (a behavior that `screen' would not expect without the `|') when its stdin is not a tty. `Less' versions newer than 177 fail miserably here; good old `pg' still works. `!:sed -n s/.*Error.*/\007/p' Sends window output to both, the user and the sed command. The sed inserts an additional bell character (oct. 007) to the window output seen by screen. This will cause 'Bell in window x' messages, whenever the string `Error' appears in the window.  File: screen.info, Node: Key Binding, Next: Flow Control, Prev: Subprocess Execution, Up: Top Key Binding *********** You may disagree with some of the default bindings (I know I do). The `bind' command allows you to redefine them to suit your preferences. * Menu: * Bind:: `bind' syntax. * Bind Examples:: Using `bind'. * Command Character:: The character used to start keyboard commands. * Help:: Show current key bindings. * Bindkey:: `bindkey' syntax. * Bindkey Examples:: Some easy examples. * Bindkey Control:: How to control the bindkey mechanism.  File: screen.info, Node: Bind, Next: Bind Examples, Up: Key Binding The `bind' command ================== - Command: bind [-c class] key [command [args]] (none) Bind a command to a key. The KEY argument is either a single character, a two-character sequence of the form `^x' (meaning `C-x'), a backslash followed by an octal number (specifying the ASCII code of the character), or a backslash followed by a second character, such as `\^' or `\\'. The argument can also be quoted, if you like. If no further argument is given, any previously established binding for this key is removed. The COMMAND argument can be any command (*note Command Index::). If a command class is specified via the `-c' option, the key is bound for the specified class. Use the `command' command to activate a class. Command classes can be used to create multiple command keys or multi-character bindings. By default, most suitable commands are bound to one or more keys (*note Default Key Bindings::; for instance, the command to create a new window is bound to `C-c' and `c'. The `bind' command can be used to redefine the key bindings and to define new bindings.  File: screen.info, Node: Bind Examples, Next: Command Character, Prev: Bind, Up: Key Binding Examples of the `bind' command ============================== Some examples: bind ' ' windows bind ^f screen telnet foobar bind \033 screen -ln -t root -h 1000 9 su would bind the space key to the command that displays a list of windows (so that the command usually invoked by `C-a C-w' would also be available as `C-a space'), bind `C-f' to the command "create a window with a TELNET connection to foobar", and bind to the command that creates an non-login window with title `root' in slot #9, with a superuser shell and a scrollback buffer of 1000 lines. bind -c demo1 0 select 10 bind -c demo1 1 select 11 bind -c demo1 2 select 12 bindkey "^B" command -c demo1 makes `C-b 0' select window 10, `C-b 1' window 11, etc. bind -c demo2 0 select 10 bind -c demo2 1 select 11 bind -c demo2 2 select 12 bind - command -c demo2 makes `C-a - 0' select window 10, `C-a - 1' window 11, etc.  File: screen.info, Node: Command Character, Next: Help, Prev: Bind Examples, Up: Key Binding Command Character ================= - Command: escape xy (none) Set the command character to X and the character generating a literal command character (by triggering the `meta' command) to Y (similar to the `-e' option). Each argument is either a single character, a two-character sequence of the form `^x' (meaning `C-x'), a backslash followed by an octal number (specifying the ASCII code of the character), or a backslash followed by a second character, such as `\^' or `\\'. The default is `^Aa', but ```' is recommended by one of the authors. - Command: defescape xy (none) Set the default command characters. This is equivalent to the command `escape' except that it is useful for multiuser sessions only. In a multiuser session `escape' changes the command character of the calling user, where `defescape' changes the default command characters for users that will be added later. - Command: meta (`C-a a') Send the command character (`C-a') to the process in the current window. The keystroke for this command is the second parameter to the `-e' command line switch (*note Invoking Screen::), or the `escape' .screenrc directive. - Command: command [-c CLASS] (none) This command has the same effect as typing the screen escape character (`C-a'). It is probably only useful for key bindings. If the `-c' option is given, select the specified command class. *Note Bind::, *Note Bindkey::.  File: screen.info, Node: Help, Next: Bindkey, Prev: Command Character, Up: Key Binding Help ==== - Command: help (`C-a ?') Displays a help screen showing you all the key bindings. The first pages list all the internal commands followed by their bindings. Subsequent pages will display the custom commands, one command per key. Press space when you're done reading each page, or return to exit early. All other characters are ignored. If the `-c' option is given, display all bound commands for the specified command class. *Note Default Key Bindings::.  File: screen.info, Node: Bindkey, Next: Bindkey Examples, Prev: Help, Up: Key Binding Bindkey ======= - Command: bindkey [OPTS] [STRING [CMD ARGS]] (none) This command manages screen's input translation tables. Every entry in one of the tables tells screen how to react if a certain sequence of characters is encountered. There are three tables: one that should contain actions programmed by the user, one for the default actions used for terminal emulation and one for screen's copy mode to do cursor movement. See *Note Input Translation:: for a list of default key bindings. If the `-d' option is given, bindkey modifies the default table, `-m' changes the copy mode table and with neither option the user table is selected. The argument `string' is the sequence of characters to which an action is bound. This can either be a fixed tring or a termcap keyboard capability name (selectable with the `-k' option). Some keys on a VT100 terminal can send a different string if application mode is turned on (e.g. the cursor keys). Such keys have two entries in the translation table. You can select the application mode entry by specifying the `-a' option. The `-t' option tells screen not to do inter-character timing. One cannot turn off the timing if a termcap capability is used. `cmd' can be any of screen's commands with an arbitrary number of `args'. If `cmd' is omitted the key-binding is removed from the table.  File: screen.info, Node: Bindkey Examples, Next: Bindkey Control, Prev: Bindkey, Up: Key Binding Bindkey Examples ================ Here are some examples of keyboard bindings: bindkey -d Show all of the default key bindings. The application mode entries are marked with [A]. bindkey -k k1 select 1 Make the "F1" key switch to window one. bindkey -t foo stuff barfoo Make `foo' an abbreviation of the word `barfoo'. Timeout is disabled so that users can type slowly. bindkey "\024" mapdefault This key-binding makes `C-t' an escape character for key-bindings. If you did the above `stuff barfoo' binding, you can enter the word `foo' by typing `C-t foo'. If you want to insert a `C-t' you have to press the key twice (i.e. escape the escape binding). bindkey -k F1 command Make the F11 (not F1!) key an alternative screen escape (besides `C-a').  File: screen.info, Node: Bindkey Control, Prev: Bindkey Examples, Up: Key Binding Bindkey Control =============== - Command: mapdefault (none) Tell screen that the next input character should only be looked up in the default bindkey table. - Command: mapnotnext (none) Like mapdefault, but don't even look in the default bindkey table. - Command: maptimeout timo (none) Set the intercharacter timer for input sequence detection to a timeout of TIMO ms. The default timeout is 300ms. Maptimeout with no arguments shows the current setting.  File: screen.info, Node: Flow Control, Next: Termcap, Prev: Key Binding, Up: Top Flow Control ************ `screen' can trap flow control characters or pass them to the program, as you see fit. This is useful when your terminal wants to use XON/XOFF flow control and you are running a program which wants to use ^S/^Q for other purposes (i.e. `emacs'). * Menu: * Flow Control Summary:: The effect of `screen' flow control * Flow:: Setting the flow control behavior * XON/XOFF:: Sending XON or XOFF to the window  File: screen.info, Node: Flow Control Summary, Next: Flow, Up: Flow Control About `screen' flow control settings ==================================== Each window has a flow-control setting that determines how screen deals with the XON and XOFF characters (and perhaps the interrupt character). When flow-control is turned off, screen ignores the XON and XOFF characters, which allows the user to send them to the current program by simply typing them (useful for the `emacs' editor, for instance). The trade-off is that it will take longer for output from a "normal" program to pause in response to an XOFF. With flow-control turned on, XON and XOFF characters are used to immediately pause the output of the current window. You can still send these characters to the current program, but you must use the appropriate two-character screen commands (typically `C-a q' (xon) and `C-a s' (xoff)). The xon/xoff commands are also useful for typing C-s and C-q past a terminal that intercepts these characters. Each window has an initial flow-control value set with either the `-f' option or the `defflow' command. By default the windows are set to automatic flow-switching. It can then be toggled between the three states 'fixed on', 'fixed off' and 'automatic' interactively with the `flow' command bound to `C-a f'. The automatic flow-switching mode deals with flow control using the TIOCPKT mode (like `rlogin' does). If the tty driver does not support TIOCPKT, screen tries to determine the right mode based on the current setting of the application keypad -- when it is enabled, flow-control is turned off and visa versa. Of course, you can still manipulate flow-control manually when needed. If you're running with flow-control enabled and find that pressing the interrupt key (usually C-c) does not interrupt the display until another 6-8 lines have scrolled by, try running screen with the `interrupt' option (add the `interrupt' flag to the `flow' command in your .screenrc, or use the `-i' command-line option). This causes the output that `screen' has accumulated from the interrupted program to be flushed. One disadvantage is that the virtual terminal's memory contains the non-flushed version of the output, which in rare cases can cause minor inaccuracies in the output. For example, if you switch screens and return, or update the screen with `C-a l' you would see the version of the output you would have gotten without `interrupt' being on. Also, you might need to turn off flow-control (or use auto-flow mode to turn it off automatically) when running a program that expects you to type the interrupt character as input, as the `interrupt' parameter only takes effect when flow-control is enabled. If your program's output is interrupted by mistake, a simple refresh of the screen with `C-a l' will restore it. Give each mode a try, and use whichever mode you find more comfortable.  File: screen.info, Node: Flow, Next: XON/XOFF, Prev: Flow Control Summary, Up: Flow Control Flow ==== - Command: defflow fstate [interrupt] (none) Same as the `flow' command except that the default setting for new windows is changed. Initial setting is `auto'. Specifying `flow auto interrupt' has the same effect as the command-line options `-fa' and `-i'. Note that if `interrupt' is enabled, all existing displays are changed immediately to forward interrupt signals. - Command: flow [fstate] (`C-a f', `C-a C-f') Sets the flow-control mode for this window to FSTATE, which can be `on', `off' or `auto'. Without parameters it cycles the current window's flow-control setting. Default is set by `defflow'.  File: screen.info, Node: XON/XOFF, Prev: Flow, Up: Flow Control XON and XOFF ============ - Command: xon (`C-a q', `C-a C-q') Send a ^Q (ASCII XON) to the program in the current window. Redundant if flow control is set to `off' or `auto'. - Command: xoff (`C-a s', `C-a C-s') Send a ^S (ASCII XOFF) to the program in the current window.  File: screen.info, Node: Termcap, Next: Message Line, Prev: Flow Control, Up: Top Termcap ******* `screen' demands the most out of your terminal so that it can perform its VT100 emulation most efficiently. These functions provide means for tweaking the termcap entries for both your physical terminal and the one simulated by `screen'. * Menu: * Window Termcap:: Choosing a termcap entry for the window. * Dump Termcap:: Write out a termcap entry for the window. * Termcap Syntax:: The `termcap' and `terminfo' commands. * Termcap Examples:: Uses for `termcap'. * Special Capabilities:: Non-standard capabilities used by `screen'. * Autonuke:: Flush unseen output * Obuflimit:: Allow pending output when reading more * Character Translation:: Emulating fonts and charsets.